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1 Derivation of the virial theorem

Suppose we have a large system of particles in hydrostatic equilibrium. We
will define what we mean by “hydrostatic” soon. We want to derive the
relationship between the time-averaged kinetic and potential energies. We
start by considering the following quantity:

Q =
∑
i

ri · pi, (1)

where ri is the i-th particle position and pi is its momentum. We should not
concern ourselves with the physical meaning of Q just yet, we will get there
next. Let us evaluate a time derivative:

Q̇ =
∑
i

ṙi · pi + ri · ṗi. (2)

Noting that pi = mivi, the expression becomes:

Q̇ =
∑
i

miṙ
2
i +

∑
i

Fi · ri =
∑
i

2Ki +
∑
i

Fi · ri. (3)

Now comes the time-averaging part. To evaluate a time average on a function
f(t), we need to calculate the following integral:

⟨f(t)⟩ = 1

T

∫ T

0
f(t)dt (4)

for some large enough T that would cause particles to traverse the available
space many times. In effect,

⟨f(t)⟩ = lim
T→∞

∫ T

0
f(t)dt. (5)
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We now apply this to our expression:

⟨Q̇⟩ = lim
T→∞

1

T

∫ T

0
Q̇dt = lim

T→∞

1

T
[Q(T )−Q(0)] =

∑
i

2⟨Ki⟩+
∑
i

⟨Fi · ri⟩. (6)

The question now is whether Q(t)−Q(0) is finite; if so, then the left-hand side
will equal 0. That is what we mean when we say “in hydrostatic equilibrium.”
Then we get:

2
∑
i

⟨Ki⟩ ≡ 2⟨K⟩ = −
∑
i

⟨Fi · ri⟩. (7)

This is already the virial theorem even though it might not be obvious yet.
We can put this equation to a test; imagine we have a box of ideal monoatomic
gas and we want to evaluate the virial theorem. According to the equiparti-
tion theorem, Ki =

3
2
kT , so the total (time-averaged) kinetic energy is:

⟨K⟩ = 3

2
NkT. (8)

Applying the virial theorem:

2⟨K⟩ = 3NkT = −
∑
i

⟨Fi · ri⟩. (9)

As the gas is ideal, there are no interactions between the particles, but there
is interaction with the walls. A single bounce contribution is:

dFi = −pdA ⇒ Fi = −
∫
∂V

pri · dA = −
∫
V
p∇ · ri dV. (10)

As ∇ · ri = 3, we get the well-known ideal gas equation of state:

3NkT = −
∑
i

(−3)pVi ⇒ pV = nKT. (11)

If force F is conservative, we can write Fi = −∇U(r):

2⟨K⟩ =
∑
i

⟨∇U · ri⟩ ≡
∑
i

⟨∂U
∂ri

r̂i · ri⟩. (12)

In this format, the virial theorem is thus written as:

2⟨K⟩ =
∑
i

⟨ri
∂U

∂ri
⟩. (13)
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We can further specify this by assuming a functional form for the potential,
U(r) = krn+1:

2⟨K⟩ =
∑
i

⟨ri(n+ 1)U(ri)⟩ = (n+ 1)⟨U⟩. (14)

For Hooke’s law, for example, n = 1; for gravity, n = −2. Thus, for a system
of particles in gravitational field:

2⟨K⟩ = −⟨U⟩. (15)

This is the virial theorem’s most frequent form.
Now let us provide a slightly different derivation to provide context to

the Q quantity. We start with Newton’s law:∑
i

Fi =
∑
i

mir̈i. (16)

Dot-multiply this by ri: ∑
i

Fi · ri =
∑
i

miri · r̈i. (17)

The left-hand side (called virial) we already recognize; for the right-hand
side we employ a frequent trick; we note that:

(mir
2
i )¨ = (2miri · ṙi) ˙ = 2mi(ṙ2i + ri · r̈i). (18)

Thus, solving for the last term on the right:

∑
i

miri · r̈i =
∑
i

1

2
(mir

2
i )¨ −

∑
i

mṙi
2. (19)

The first term on the right is directly related to our Q quantity; thus, we
are talking about the second time derivative of the moment of inertia. For
a system in a hydrostatic equilibrium, the time average of this term is again
0, and the rest is our virial theorem.

Another example: consider a collapsing spherical nebula. We want to
calculate the total energy of the nebula.

We start with the virial theorem:

2⟨K⟩ = −⟨U⟩. (20)
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As total energy E = K + U , it suffices to calculate U and we will obtain E:

E = K + U = −U

2
+ U =

U

2
. (21)

So let us calculate U !

dU = −GM(r)dm

r
= −GM(r)ρ(r)4πr2dr

r
. (22)

Assuming radial-only mass distribution, we can substitute M(r) = ρ(r)V
and integrate:

U = −G
(4π)2

3

∫
ρ2(r)r4dr. (23)

If we further assume that ρ(r) ≡ ρ0, the final expression becomes:

U = −3GM2

5R
⇒ E = −3GM2

10R
. (24)

How much energy has been radiated away? For that we need to evaluate the
difference Erad = Ecloud − Estar:

Erad = − 3GM2

10Rcloud

+
3GM2

10Rstar

≈ 3GM2

10Rstar

. (25)

The approximation holds because Rcloud ≫ Rstar. Plugging in the numbers,
we get Erad ∼ 1041J. If the solar luminosity were constant, this energy would
be radiated away in:

t =
Erad

L⊙
=

1041J

4× 1026W
= 107 years. (26)

How about the central temperature of the Sun?

K =
3

2
NkT =

3

2

MkT

µmH

, U = −3GM2

5R
. (27)

From the virial theorem it follows that:

2K + U = 0 ⇒ 3
MkT

µmH

− 3GM2

5R
= 0. (28)

Solving for T:

T =
GMµmH

5kR
= 2× 106K. (29)
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That is ∼8 times too small, but that’s because we have made some pretty
stark approximations about ρ(r).

When will a cloud collapse to a protostar? More of the same.

E =
1

2
U < 0; 2K + U = 0; K =

3

2

MkT

µmH

; U = −3GM2

5R
. (30)

Plugging it in, we obtain:

MJ =

(
5kT

GµmH

)3/2 (
3

4πρ

)1/2

. (31)

This is known as Jeans’ mass. If instead we solve for R, we refer to that as
Jeans’ length:

RJ =

(
15kT

4πρGµmH

)1/2

. (32)

2 Homologous free-fall time

Assuming a spherical, equal density cloud isolated in space, the free-fall is
determined by an isothermal collapse. We start with the equation of motion:

r̈ = −GMr

r2
, (33)

where Mr is the mass enclosed within a spherical shell of radius r. Multiply
by ṙ:

ṙr̈ =
(
1

2
ṙ2
)̇
= −GMr

r2
ṙ. (34)

We can integrate this:

1

2
ṙ2 = −4πρ0Gr30

3

∫ 1

r2
dr =

4πρ0Gr30
3r

+ C, (35)

where C is the integration constant. We get it by requiring that ṙ|r=r0 = 0:

1

2
ṙ2 =

4

3
πρ0Gr20 + C = 0 ⇒ C = −4

3
πρ0Gr20. (36)

This yields the following expression:

ṙ = ±
[
8

3
πρ0Gr20

(
r0
r
− 1

)]1/2
. (37)
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Sign choice comes from the direction of collapse: it needs to be a negative
sign. We integrate this again by introducing x = r/r0 and denoting θ =
(8πρ0G/3)1/2:

r0ẋ = −θr0

(
1

x
− 1

)1/2

. (38)

Next we introduce a new variable ξ:

x = cos2 ξ, ẋ = −2 cos ξ sin ξξ̇. (39)

From there:

ẋ = −2 cos ξ sin ξξ̇ = θ

(
1

cos2 ξ
− 1

)1/2

⇒ cos2 ξξ̇ =
θ

2
. (40)

We integrate this again: ∫
cos2ξdξ =

θ

2

∫
dt =

θ

2
t. (41)

The left-hand side is integrated by noting the trig relationship for double
angles:

cos 2ξ = cos2 ξ − sin2 ξ = 2 cos2 ξ − 1 ⇒ cos2 ξ =
1

2
(1 + cos 2ξ). (42)

The integral then becomes:∫
cos2ξdξ =

1

2
ξ +

1

4

∫
cos 2ξd(2ξ) =

1

2
ξ +

1

4
sin 2ξ +D, (43)

where D is, again, the integration constant. This time we use the constraint
that r|t=0 = r0 (so, in turn, x|t=0 = 1 and ξ|t=0 = 0):

D = 0 ⇒ ξ +
1

2
sin 2ξ = θt. (44)

Finally, we can evaluate t|r→0, which is the homologous free-fall time:

tff = t|r=0 =
π

2θ
=

(
3π

32

1

ρ0G

)1/2

. (45)
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3 Cloud fragmentation

Masses of large molecular clouds certainly exceed Jeans’ mass. That would
imply that such clouds can form supermassive stars, up to the initial mass of
the cloud, but this clearly does not happen. Stars tend to form in multiples
or open clusters, so something must be causing fragmentation.

As foray into the discussion of fragmentation, consider a collapsing cloud;
its density certainly increases by several orders of magnitude during freefall.
As temperature remains nearly constant, Jeans mass must then decrease.
Thus, any initial inhomogeneities will cause individual sections of the cloud
to satisfy the Jeans criterion independently and begin to collapse locally.

On the flip side, fragmentation must at some point stop, otherwise we
would be creating a whole slew of small bodies. The main reason for this is
that collapse goes from being isothermal to being adiabatic – otherwise stars
would have 10-100K. An isothermal collapse implies that all excess energy is
efficiently radiated away, while an adiabatic collapse does not lose any energy
and, in consequence, the gas must heat up.

3.1 Recap of adiabatic equation of state

First law of thermodynamics:

dU = dQ+ dW = dQ− pdV. (46)

Specific heat is the amount of heat required to raise the temperature of unit
mass by dT :

cp =

(
∂Q

∂T

)
p

, cv =

(
∂Q

∂T

)
V

. (47)

Remember that U is state quantity, so it does not depend on any specific
circumstance. That is why we can evaluate it, for example, at constant
volume:

dU =

(
∂Q

∂T

)
V

dT ≡ cvdT. (48)

Because U is a state quantity, this holds generally, not just when V is con-
stant. We can evaluate the first law of thermodynamics for a monoatomic
ideal gas:

dU =
3

2
NMkdT =

3

2

k

µmH

dT =
3

2
nRdT. (49)
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From there we can see the expression for R:

nR =
k

µmH

=
2

3
cV . (50)

To find the relationship with cP , we evaluate first law of thermodynamics at
constant pressure:

dU = dQ− pdV =

(
∂Q

∂T

)
p

dT − p

(
∂V

∂T

)
p

dT. (51)

Thus:

dU = cpdT − nRdT = cpdT − 2

3
cV dT = (cp −

2

3
cV )dT = cV dT. (52)

From there it follows that:

cV = cp −
2

3
cV ⇒ cp

cV
=

5

3
for monoatomic gas. (53)

In general, we define γ = cp/cV as the adiabatic constant. It tells us how
rapidly will gas heat up or cool down during an adiabatic process (i.e., gas
expanding/shrinking or compressing/rarefying). Larger value of γ means a
larger temperature response to pressure/volume change. We can now derive
the adiabatic equation(s) of state:

dU = dQ− pdV = −pdV = cV dT. (54)

Differentiating the ideal gas equation of state:

pdV + V dp = nRdT (assuming constant n). (55)

Plugging the first equation into the second:

pdV + V dp = nR
(
− p

cV

)
dV. (56)

Rearranging yields: (
1 +

nR

cV

)
dV

V
= −dp

p
. (57)

Yet the expression in parentheses is precisely γ, so:

p ∝ V γ : adiabatic equation of state. (58)
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We can express any other thermodynamical quantity to get other forms of
the adiabatic equation of state:

pdV + V dp = nRdT ⇒ pdV = nRdT − V dp, (59)

and plugging into the first equation:

γpdV = γ(nRdT − V dp) = −V dp ⇒ γ
p

T
dT = dp(γ − 1) (60)

and, finally:

p ∝ T γ/(γ−1) ; adiabatic equation of state. (61)

We can do the same with density:

p =
ρ

M
RT, dp =

R

M
(ρdT + Tdρ). (62)

Plug these into the previous equation and we get:

T ∝ ργ−1. (63)

3.2 Back to fragmentation

After that quick digression into thermodynamics, we can now go back to
our question of fragmentation. How does Jeans’ mass change if we use this
adiabatic relationship?

3NkT − 3

5

GM2

R
= 0, (64)

k

µmH

Cργ−1 =
1

5

GM

R
. (65)

Now we substitute R:

k

µmH

Cργ−1 =
1

5
GM

(
3M

4πρ

)−1/3

. (66)

Solve for mass:

M
2/3
J =

5kC

GµmH

(
3

4π

)1/3

ργ−1−1/3 ⇒ MJ ∝ ρ(3γ−4)/3. (67)
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If the cloud is all hydrogen, then γ = 5/3 and MJ ∝ ρ1/2. Thus, MJ

increases with increasing density for an adiabatic collapse! There must be
some minimum mass for fragments.

According to the virial theorem, energy must be liberated during collapse:

∆Eg =
3

10

GM2
J

RJ

, Lff =
∆Eg

tff
=

12
√
2

10
G3/2

(
MJ

RJ

)5/2

. (68)

Emission is governed by radiation:

Lrad = 4πR2
JεσT

4, (69)

where we introduced ε as the efficiency parameter, which is between 0 (adi-
abatic) and 1 (blackbody). Equating the two yields:

M
5/2
J =

4π

G3/2
R

9/2
J εσT 4. (70)

Now we eliminate the radius:

M
5/2
J =

4π

G3/2

(
3MJ

4πρ

)3/2

T 4 (71)

and express density with Jeans’ mass:(
3

4πρ

)1/2

= MJ

(
5kT

GµmH

)−3/2

, (72)

yielding:

MJ = 0.03M⊙
T 1/4

ε1/2µ9/4
. (73)

For typical values of T , ε and µ, we get ∼0.1-0.5M⊙.

4 Freefall collapse beyond analytical models

We have of course neglected a lot of important physical contributions that
could not be added to the analytical model. For example,

• initial velocity of the cloud’s outer layers;
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• radiation transport through the cloud;

• vaporization of dust grains;

• dissociation of molecules, ionization of atoms;

• rotation/angular momentum;

• magnetic fields; etc.

To get around this, we need to solve MHD equations numerically.

4.1 Phenomenological description

Consider a supercritical spherical cloud of ∼1M⊙. The evolution pathway
consists of the following steps:

• initial freefall is nearly isothermal because light can escape from the
cloud;

• because of the mass buildup in the center, density increases, causing
faster core contraction;

• when density reaches about 10−10 kg/m3, the cloud becomes optically
thick due to dust;

• this makes contraction more adiabatic; increased pressure slows down
core contraction;

• the central region establishes a quasi-hydrostatic equilibrium with a
∼5R⊙ radius. That is the protostar;

• around the protostar the material is still in freefall. Once it falls onto
the core, it produces a supersonic shock wave that loses its kinetic
energy and produces heat that powers core luminosity;

• when the temperature reaches ∼1000K, dust vaporizes and opacity
drops. But since luminosity stays high, that necessarily implies a rising
temperature;
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• as the material keeps falling in and the temperature keeps rising, once
it reaches ∼2000K, molecular hydrogen dissociates into atoms. This
reduces the pressure gradient, destabilizing the core and the second
collapse occurs. The radius is reduced to ∼130% of the present size,
where hydrostatic equilibrium is again established;

• as the envelope continues to accrete material, deuterium starts to burn:

2
1H+ 1

1H → 3
2He + γ (74)

This produces ∼60% of the luminosity;

• as both the infalling mass and deuterium are limited, the luminosity
eventually decreases. This is called deuterium burnout. The protostar
cools slightly.

This whole sequence takes ∼ tff time. Fig. 1 depicts the numerically
computed evolutionary tracks for the described scenario. Once we have a
quasi-static protostar, the rate of evolution is dictated by the stars’s ability
to thermally adjust to contraction. We have estimated this before already:
the main agent is gravity, so we recall that potential energy is:

U = −3

5

GM2

R
. (75)

Important aspect: ∆U is negative for r2 < r1, and because Etot needs to be
conserved, the negative excess is compensated by a positive change:

∆U = −3

5
GM2

(
1

r2
− 1

r1

)
< 0 ⇒ ∆E > 0. (76)

Thus, this will produce heat, half of which will be radiated away (half because
of the virial theorem):

∆Etot =
3

5

GM2
⊙

R⊙
⇒ Erad =

3

10

GM2
⊙

R⊙
. (77)

The timescale, tKH ∼ Erad/L⊙, is called the Kelvin-Helmholtz timescale and
is ∼ 107 years for the Sun.
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Figure 1: Evolutionary tracks for the cloud collapse into a protostar.

5 Stellar structure

Let us start the discussion of stellar structure with underlying assumptions.

• stars are considered isolated, their evolution only depends on their in-
trinsic properties;

• stars form from a homogeneous cloud;

• stars are spherically symmetrical, which is akin to saying that we ne-
glect rotation and magnetic fields.

Given the assumed spherical symmetry, all interior physical quantities
depend only on r:

p = p(r), T = T (r), ρ = ρ(r), . . . (78)
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In an evolving star, we also have time as an independent quantity. When we
evaluate derivatives, we do that with respect to r and t:

dX =

(
∂X

∂r

)
t=const.

dr +

(
∂X

∂t

)
r=const.

dt. (79)

Consider, for example, a spherical mass shell at distance r from the center
and thickness dr; mass differential becomes:

dm(r, t) =
∂m

∂r
dr +

∂m

∂t
dt = 4πr2ρdr − 4πr2ρvdt, (80)

where v is the radial velocity of mass inside the shell, and – in general – both
ρ = ρ(r, t) and v = v(r, t). The first term on the left is the first fundamental
equation of stellar structure:

∂m

∂r
= 4πr2ρ(r, t). (81)

The second term describes mass loss/gain by motion; it is generally negligi-
ble in stellar interiors but can be important in the envelopes (stellar wind,
accretion).

Since mass increases monotonically outward, we can also useM(r) instead
of r:

∂

∂m
=

∂

∂r

∂r

∂m
=

1

4πr2ρ(r, t)

∂

∂r
. (82)

Thus, the first equation of stellar structure can also be written as:

∂r

∂m
=

1

4πr2ρ
. (83)

Note that, if r ̸= r(t), this becomes an ordinary differential equation.

5.1 Poisson equation for gravity

Say we wanted to compute the gravitational field in point r due to all masses
present in space S. We need to integrate:

g = −G
∫
S

r− s

||r− s||3
dM = −G

∫
S

r− s

||r− s||3
ρ ds, (84)

14



where s should be taken as dsxdsydsz, i.e. a volume element. Evaluate a
divergence of both sides:

∇ · g = −G
∫
S
∇ ·

(
r− s

||r− s||3

)
ds. (85)

Let us take a closer look at the divergence under the integral:

∇ ·
(
r

r3

)
=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (x, y, z)

(x2 + y2 + z2)3/2
. (86)

This results in:

∇ ·
(
r

r3

)
=

1

r6

[
3r3/2 − 3r1/2(x2 + y2 + z2)

]
= 0 (87)

for any r ̸= 0. How about when r = 0? We apply Gauss’s law:∫
S
∇ ·

(
r

r3

)
dS =

∫
∂S

r

r3
· dA =

∫
∂S

1

r3
r · r̂ dA =

∫
∂S

dA

r2
, (88)

where dA = r2 sin θdθdϕ is a spherical surface element. Substituting that in:∫
∂S

∇ϕ · dA =
∫ 2π

0

∫ π

0
∇ϕ · r̂ r2 sin θdθdϕ. (89)

We can immediately integrate along ϕ, yielding 2π; we also note that ϕ ∝ 1/r,
and ∇ϕ = −r/r3:∫ 2π

0

∫ π

0
∇
(
1

r

)
r2 sin θdθdϕ = −2π

∫ π

0
r̂ · r̂ sin θdθ = 4π. (90)

We can now write the auxiliary divergence that encompasses both r = 0 and
r ̸= 0:

∇ ·
(
r

r3

)
= 4πδ(r), (91)

where δ(r) is the Dirac delta function. Use this in the original integral:

∇ · g ≡ −∇2Φ = G
∫
S
∇ ·

(
r− s

||r− s||3

)
ρ ds = −4πGρ. (92)

This is the Poisson equation for gravity, and Φ is the potential that solves it.
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5.2 Spherically symmetrical case

If g = g(r), this reduces to the familiar equation; we start from the Poisson
equation:

∇ · g = −4πρG. (93)

Divergence in spherical units is:

∇ · f = 1

r2
∂(r2f(r))

∂r
+ angular terms, (94)

so:

∇ · g =
1

r2
∂(r2g(r))

∂r
= −4πρG. (95)

Rearrange and integrate:

r2g(r) = −4πρG
∫

r2dr = −4

3
πρGr3 ≡ GM ⇒ g(r) = −GM

r2
. (96)

5.3 Equations of motion and hydrostatic equilibrium

6 Polytropes and the Lane-Emden equation

6.1 Interpreting the solutions

In the previous section we introduced a scaling parameter α as:

α =

(
4πG

K(n+ 1)
ρ(n−1)/n
c

)1/2

. (97)

We can now “unscale” ξ to get the radius of a polytrope for the given value
of n:

r =
ξ

α
= ξ

(
4πG

K(n+ 1)
ρ(n−1)/n
c

)−1/2

; (98)

if this is evaluated at ξn ≡ ξ|y=0, we get the polytrope radius:

Rn = ξn

(
K(n+ 1)

4πG

)1/2

ρ(1−n)/2n
c . (99)

Similarly, we can obtain the mass of the polytrope. Start from the first
equation of stellar structure:

m(r) =
∫

4πr2ρdr =
∫
4π

ξ2

α2
ρcy

ndξ

α
=

4πρc
α3

∫
ξ2yndξ. (100)
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The integrand looks just like the right-hand side of the Lane-Emden equation
(to the negative sign), so we substitute it in:

m(ξ) = −4πρc
α3

∫ d

dξ

(
ξ2
dy

dξ

)
dξ. (101)

Thus, this simplifies to the final form:

m(ξ) = −4π

α3
ξ2
dy

dξ
. (102)

It proves useful to introduce an auxiliary function θ(ξ):

θ(ξ) = −ξ2
dy

dξ
⇒ m(ξ) =

4π

α3
θ(ξ). (103)

If we substitute the expression for α and evaluate it at ξ = ξn, we obtain the
polytrope mass:

Mn = (4π)−1/2

[
K(n+ 1)

G

]3/2
ρ(3−n)/2n
c θ(ξn). (104)

Finally, we can get a useful relationship between Mn and Rn if we eliminate
ρc from both expressions. After some manipulation:

K = CnR
(3−n)/nM (n−1)/n, where (105)

Cn =
(4π)1/n

n+ 1
G(3−n)/2nξ(n−3)/nθ(1−n)/n(ξn). (106)

This helps us appreciate two special cases: n = 1 and n = 3. In case of n = 1,
radius depends exclusively on K and is independent of mass; for n = 3, mass
depends exclusively on K and is independent of radius. To put it differently,
for a given K there is a single value of R (for n = 1) or M (for n = 3) that
can establish a hydrostatic equilibrium. We can also relate central density
to the average density:

⟨ρ⟩ = 3M

4πR3
(107)

by plugging in the expressions for Mn and Rn:

⟨ρ⟩ = 3ξ−3
n θ(ξn)ρc. (108)

Their ratio, ⟨ρ⟩/ρc, is the degree of central concentration of a polytrope. It
only depends on the polytropic index n.
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6.2 Specific solutions

As mentioned above, there are three values of n that have analytical solutions:
n = 0, n = 1, and n = 5. Let us explore those solutions.

6.2.1 The n = 0 solution

This is the simplest solution as it represents a homogeneous gas sphere with
constant density ρc.

1

ξ2
d

dξ

(
ξ2
dy

dξ

)
= −1. (109)

This equation is fully integrable and it yields a solution:

y = 1− ξ2

6
. (110)

The value of ξ at which y assumes 0 gives us the scaled radius of the star:

0 = 1− ξ2n
6

⇒ ξn =
√
6. (111)

6.2.2 The n = 1 solution

This time we are solving the following equation:

1

ξ2
d

dξ

(
ξ2
dy

dξ

)
= −y. (112)

This differential equation can be solved by series expansion. We set:

y(ξ) =
∑
k

akξ
k; y′(ξ) =

∑
k

kakξ
k−1; y′′(ξ) =

∑
k

k(k − 1)akξ
k−2. (113)

Plugging this into the Lane-Emden equation yields the following relationship:∑
k

[k(k − 1) + 2k]akξ
k−2 = −

∑
k

akξ
k. (114)

Introduce l = k − 2:∑
l

(l + 1)(l + 2) + 2(l + 2)al+2ξ
l = −

∑
l

alξ
l, (115)
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where we renamed the dummy variable on the right-hand side from k to l.
Now we can figure out the recursion:

al+2 = − al
(l + 2)(l + 3)

. (116)

The last thing to do is to write out the series:

y = a0ξ
0 + a1ξ

1 + a2ξ
2 + . . . (117)

y = a0 + a1ξ −
a0

4× 5
ξ2 − a1

5× 6
ξ3 . . . (118)

Now we group the terms with a0 and a1 and see if it is anything recognizable:

y = a0

[
1− ξ2

4× 5
+

ξ4

6× 7
− ξ6

8× 9
+ . . .

]
+

+a1

[
ξ − ξ3

5× 6
+

ξ5

7× 8
− ξ7

9× 10
+ . . .

]
. (119)

These two series are Bessel series; from the boundary condition y(ξ = 0) = 1
we see that a1 = 0 and a0 ̸= 0. Thus, the solution is:

y = a0
∑
k

mod(k, 2)(−1)k
ξk

(k + 2)(k + 3)
= a0j0(ξ) =

sin ξ

ξ
. (120)

To find the scaled radius, we set this to 0:

0 =
sin ξn
ξn

⇒ ξn = π. (121)

6.2.3 The n = 5 solution

The last analytical solution can be obtained by proposing a trial solution:

y(ξ) = (1 + Aξ2)1/2. (122)

Note: you can arrive to the same answer by first introducing a substitution
u = ξy, then v = u−2 and then integrating. But if we stick with the trial
solution:

dy

dξ
= aξ(1 + Aξ2)−3/2, (123)
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which, after plugging into the Lane-Emden equation, leads to:

−3A
[
(1 + Aξ2)− Aξ2

]
= −1 ⇒ A =

1

3
(124)

and the final solution:

y(ξ) =

(
1 +

ξ2

3

)−1/2

. (125)

As before, equating this to 0 yields the radius, which in this case is infinite:

0 =
1(

1 + ξ2n
3

)1/2 ≈ 1

1 +
√
3
3
ξn

⇒ ξn → ∞. (126)
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