INTRODUCTION TO ASTROPHYSICS

- Try it yourself:
 - How much energy has been stored into the star during its collapse?
 - How much time does Sun have to radiate away that energy?
 - What is the central temperature of the Sun?
- Condition for nebular collapse
 - Jeans' mass
 - Jeans' radius
- Try it yourself:
 - typical diffuse hydrogen nebulae have T=50K, n=500 particles/cm³ and typical masses between 1-100M_{Sun}. Will such nebulae contract into protostars?
 - Trapesium nebula has T=150K and n=10⁸ particles/cm³. What is the nebula's maximal size?
- Homologous collapse
- Try it yourself:
 - what is the homologous collapse timescale for the Trapesium nebula?

Useful quantities:	•
--------------------	---

$$\begin{split} m_{\rm H} &= 1.67 \times 10^{-27} \text{ kg} \\ k_{\rm B} &= 1.38 \times 10^{-23} \text{ J/K} \\ M_{\rm Sun} &= 2 \times 10^{30} \text{ kg} \\ R_{\rm Sun} &= 696,000 \text{ km} \\ L_{\rm Sun} &= 4 \times 10^{26} \text{ W} \end{split}$$