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Lab Schedule 
MSE2151: Astronomy Laboratory – Stars 

Spring 2019 
 
 

Week 1: Introductory meeting 
Week 2: Lab A – Working with Numbers, Graphs, & the Computer 
Week 3: Lab B – Energy Transport in Stars 
Week 4: Lab C – Introduction to Spectroscopy 
Week 5: Lab D – The Telescope Part I. 
Week 6: Lab E – The Telescope Part II. 
Week 7: Lab F – Classification of Stellar Spectra 
Week 8: Lab G – Effects of the Atmosphere on Astronomical Observations  
Week 9: Lab H – Taking a Star’s Temperature 
Week 10: Lab I – Trigonometric Parallax 
Week 11: Lab J – The Distance to a Star Cluster 
Week 12: Lab K – Measuring the Mass of the Andromeda Galaxy 
Week 13: Lab L – Expansion of the Universe 
Week 14:  MAKEUP LAB 
 

Observing sessions for the “Observatory Lab” will be scheduled throughout the 
semester. 
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Observatory Lab 

The Villanova Public Observatory 
 

 
 
 
PURPOSE: 
 
The science of astronomy began with the first humans who looked up into the nighttime sky and 
wondered “What’s going on up there?”   This semester, you will explore some of the answers to 
this question in your lecture course and in this lab course.   Most of this exploration will happen 
in the classroom or in the lab room.  This lab will give you the opportunity to go outside and 
actually look at the nighttime sky, using both the unaided eye and a powerful modern astronomical 
telescope.    
 
EQUIPMENT: 
 
The Villanova Public Observatory, accessible via the Department of Astrophysics & Planetary 
Science on the 4th floor of Mendel Science Center. 
 
 

 The Villanova Public Observatory 14” Celestron Schmidt-Cassegrain Telescope 
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Instructions 
 
To complete this lab you must fulfill 4 requirements: 
 

1. At least once during the semester you must attend an evening observing session at the 
Villanova Public Observatory, which will be conducted by students from the Department 
of Astrophysics & Planetary Science.  During this session, the students will take you on a 
tour of the most interesting objects visible in that night’s sky. 

2. Have one of the Observing Assistants sign and date the cover page of your lab report. 
3. Sign that evening’s Observatory Attendance Sheet.  (If you can’t find it, ask one of the 

Observing Assistants.) 
4. Write a 2-page report (double spaced, 11- or 12- point font, normal margins) describing 

your visit to the Observatory.  Include the sky conditions, describe the type of telescope 
you used, and the objects you viewed.  If you have suggestions for improvements of the 
observing sessions, or any general comments about the experience, please feel free to 
include them in your report.  

 
The observatory is accessed from the 4th floor of the Mendel Science Center through the 
Department of Astrophysics & Planetary Science.  Once on the 4th floor, the Observing assistants 
will direct you to the telescopes. 
 
During the semester, and beginning Tuesday January 22rd, the Observatory will be open Monday 
thru Thursday evenings, initially from 7-9 PM and then, after Daylight Savings Time begins on 
March 10, from 8-10 PM.  The Observatory will not be open during Spring Break or on any 
University holidays or Snow Days.  The last possible night to complete this assignment is the last 
day of classes Thursday May 2.  The Observatory will then be closed for the semester. 
 
Lab reports can be handed in any time during the semester.   The last day they will be accepted 
is the Reading Day, Friday May 3. 
 
There is no Make-up for the Observatory Lab!  Since it is one of 13 graded lab assignments 
this semester, then 1/13 of your grade will be a zero if you don’t get to the Observatory!  There 
will be plenty of clear nights this semester, but don’t wait til the end.  It is entirely possible that 
the last week or so could be clouded out or rained out – it’s happened before. 
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Frequently Asked Questions 
 
 

What will I be looking at? 
 
It depends on what is available in the sky.  The Moon looks great through our telescopes and the 
best time to view it is a few days after the First Quarter phase.  In this phase, the Moon is high in 
the sky around the time of sunset and the side illumination creates very pronounced shadows on 
the lunar surface, allowing the rugged terrain to be seen clearly.  During the Spring 2019 semester, 
First Quarter phases occur on Jan 13, Feb 12, Mar 14, and Apr 12.  
 
Spring 2019 will not be an ideal semester for viewing the planets although, throughout the 
semester, Mars will be visible in the western sky in the evening.  The other “naked eye” planets 
– Mercury, Venus, Jupiter, and Saturn – will all be morning objects, rising long after the 
Observatory has closed for the night.  If you’d like to keep track of the visibility of the planets 
throughout the year, check out:  https://www.timeanddate.com/astronomy/night/ 
 
Although the planets won’t be making an appearance this spring, there will be plenty of other 
objects available to keep the telescope busy, including:  the Pleiades and Hyades star clusters, the 
Double Cluster in Perseus, the Beehive Cluster, the Orion Nebula, and the Andromeda galaxy.   

 
If you’d like to keep informed about upcoming celestial events in general, check out 
https://www.timeanddate.com/astronomy/sights-to-see.html 

 
 
Is the Observatory Open tonight? 
 
If “tonight” is a Monday thru Thursday and a regular class day, then the chances are good.  It all 
depends on the weather.  The best way to tell?  Look up shortly after sunset.  If you can see the 
stars, we’re probably open.  If you want a more high-tech solution, you can go to one of the many 
weather websites (or apps) available.  Most of these show cloud cover and some will project the 
cloud cover a day or so in advance.  One such site is http://www.weatherstreet.com/weather-
forecast/Villanova-PA-19085.htm. 
 
 

What if I don’t fulfill all 4 of the requirement listed in the Instructions? 
 
No credit will be issued for the Observatory lab 
  

https://www.timeanddate.com/astronomy/night/
https://www.timeanddate.com/astronomy/sights-to-see.html
http://www.weatherstreet.com/weather-forecast/Villanova-PA-19085.htm
http://www.weatherstreet.com/weather-forecast/Villanova-PA-19085.htm
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  Lab A 
Working with Numbers, Graphs, and the Computer 

Adapted from:  Laboratory Experiments in Astronomy, Johnson & Canterna 

 
 

 
PURPOSE: 
 
To become acquainted with the Excel spreadsheet and to review some mathematical concepts that 
will be implemented in upcoming labs. 
 
EQUIPMENT: 
 
The computer and the Excel spreadsheet. 
 
 

Introduction 
 
By their nature, the sciences are quantitative.  Science involves making measurements, analyzing 
quantitative relationships, and making predictions based on mathematical models.  In this exercise 
we will review some of those mathematical fundamentals that will be used in subsequent exercises.  
This review will help you pinpoint any areas you might need to review in more depth.  The 
magnitude scale, a strictly astronomical concept, will be introduced.  This has been the shorthand 
notation used for centuries to describe the brightness of stars. 
 
 

Lab Procedure 
 
PART 1:  SCIENTIFIC NOTATION 
 
Astronomy is a science which deals with the very large and the very small.  For example, the 
distance to the nearest star (beyond the Sun) is approximately 39,900,000,000,000 km, while the 
distance between the electron and proton in an atom of Hydrogen in interstellar space is about 
0.00000000529 cm.  It can be cumbersome to deal with such extreme numbers and a more compact 
way of dealing with them is to express them in scientific notation. 
 
The number 13,700,000 is expressed in scientific notation as 1.37 × 10 7.  “10 7” is shorthand for 1 
followed by 7 zeros, 10 × 10 × 10 × 10 × 10 × 10 × 10 (10 times itself 7 times), or 10,000,000.  
1.37 × 10 7 equals 13,700,000 or 1.37 × 10 million.  Any number can be expressed as a number 
between 1 and 10, times 10 n.  Take 207,000 as an example.  There are 5 decimal places to the right 
of the 2.  Thus 207,000 = 2.07 × 10 5.  Multiplication by 10 is equivalent to shifting the decimal 
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point in a number one place to the right.  Multiplication by 10 n is equivalent to shifting the decimal 
point n decimal places to the right, or to multiplying by 10 n times. 
 
This technique is also useful for numbers smaller than 1.  For example, 0.0012 can be represented 
as 1.2 × 10 -3 (or 1.2 divided by 1000).  A negative exponent indicates how many places the decimal 
is shifted to the left.  10 -3 is equivalent to 0.001 or 1/103.  Note:  A negative exponent does not 
mean that the number itself is negative; only that it is between 0 and 1. 
 

EXERCISE 1-1:  Using Table 1 included on the last page of this lab, convert the numbers 
given in the first column (“Standard Notation”) into scientific notation. 
 
EXERCISE 1-2:  Create a single-column Excel spreadsheet table using the “Standard 
Notation” numbers from Table 1.  Label the top row of the column (you can call it 
“Standard Notation.”) Your numbers should look exactly as they do in Table 1.  You will 
need to adjust the number of decimal places displayed for each number.  To do this, first 
highlight a cell, then right-click and select Format Cells.  Select Number and type in the 
desired number of decimal places needed to match the format in the Table 1.      
 
EXERCISE 1-3:  On your Excel spreadsheet, copy your column of numbers and paste it 
into the adjacent column (i.e., column B).  Now have Excel convert these numbers to 
scientific notation for you.  To do this, highlight the cells, right-click, and select Format 
Cells.  Then choose Scientific Notation and type in the desired number of decimal places 
(in this case, 2).   Label this column “Scientific Notation.”   
 

Notice that, in Excel, the format used for scientific notation is somewhat different from that 
described above.  E.g., the quantity 2.07 × 10 5 is written by Excel as 2.07e-5, where the “e” stands 
for “times 10 to the”.  This form must be used to enter scientific notation into Excel. 
 
Also notice that it is easier to keep track of significant figures in scientific notation.  Simply, all 
the figures used in scientific notation are significant.  Thus, the number 2.07e-5 is implied to have 
three significant figures and the number 2.070e-5 is implied to have 4 significant figures.  In this 
last case, the trailing zero is significant and thus a result expressed as 2.070e-5 can be assumed to 
be more precise than a result expressed as 2.07e-5. 
 
 
PART 2:  LOGARITHMS 
 
Another shorthand way of expressing very large or very small numbers is with logarithms. 
The logarithm or log of a number is simply the exponent to which 10 must be raised to equal that 
number, i.e.,  10𝐥𝐥𝐥𝐥𝐥𝐥(𝑥𝑥) = 𝑥𝑥.  For example, the number one hundred million (100,000,000) can be 
written as 108 and, therefore, log(100,000,000) = 8.   
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Negative numbers do not have logarithms since there is no power to which 10 can be raised that 
will yield a negative number.  However the logarithm itself can be negative, and corresponds to a 
number greater than zero but less than one.  The log of a number can also be a non-integer.   
Consider log(250).  The number 250 is greater than 102 (i.e., 100) but less than 103 (i.e., 1000) and 
so we would expect its logarithm to be between 2 and 3.  In fact, log(250) = 2.40. 
 

EXERCISE 2-1:  In column C of your Excel spreadsheet, compute the logarithms of the 
numbers in the first column.  For example, to compute the log of a number located in cell 
A2 of your spreadsheet (i.e., column A, row 2) and place the result in cell C2, simply type 
“=log(A2)” in cell C2.  The log of the number in cell A2 will then appear in cell C2.  Do 
this for all entries in column A.  Be sure to label the column and adjust the number of 
decimal places in the displayed logarithms to preserve the number of significant figures in 
the original numbers. 

 
NOTE!  Logarithms are never expressed using scientific notation.  Always use standard 

notation and follow the significant digits rules. 
 
PART 3:  LINEAR RELATIONSHIPS 
 
In this exercise we will see how physical relationships may be examined graphically.  In the figure 
below, we have plotted the weights (on the “y” axis) versus the heights (on the “x” axis) for the 
Super Bowl-winning 1985 Chicago Bears football team, using the small diamond symbols.  It is 
clear from the plot that there is some general correlation between the heights and weights, i.e., “the 
taller, the heavier.”  We have drawn a straight line through the data to indicate a more specific 
linear relationship between the height and weight in this group.  The line is intended to represent 
the general trend in the data, while ignoring deviations owing to eccentricities of individuals.  In 
this case, the line appears to give a good fit to the general trend of the data and it is reasonable to 
conclude that height and weight are linearly-related for this dataset.   
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Note the outlying point far above the main relationship; these data correspond to William “the 
Fridge” Perry, one of the first 300 pounders in football and who clearly did not fit into the general 
height-weight relationship of his teammates! 
 
In the Table below we have listed the heights and weights for a different team, namely, a selection 
of 15 typical college students. 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

EXERCISE 3-1:  Transfer these data to a new Excel spreadsheet.  To open a new sheet, 
click Sheet2 at the bottom of your current spreadsheet.  (If there is no Sheet2, click the 
circled “+” sign to create one.)  In your spreadsheet, use only two columns – height and 
weight.  Label the columns appropriately.  Be sure that the number format in your 
spreadsheet matches that of the table. 
 
EXERCISE 3-2:  Now create a graph of the college students’ Weight vs. Height on your 
spreadsheet.  Follow the instructions given in the “Microsoft Excel Tutorial” handed out 
in class.  Be sure that the data in the table are labeled and that the plot is properly scaled 
and annotated. 

 
Once again, you should observe a nearly linear relationship between the height and weight of 
people in the group, as you did for the football players in Problem 1.  That is, the heights and 
weights should fall close to a straight line drawn through them.   
 

EXERCISE 3-3: Using the “trendline” feature of Excel, show the linear relationship that 
best fits the data.  Make sure that the formula for the trendline is displayed clearly on the 
plot.  (Right-click somewhere on the trendline, then click “Format Trendline…”, then 
check “Display equation on chart.”).   

 

Typical College Students 
Height 
(inches) 

Weight 
(pounds) 

Height 
(inches) 

Weight 
(pounds) 

60 95 69 150 

70 173 64 115 

67 125 62 112 

75 180 64 127 

61 105 68 155 

73 200 72 160 

67 140 65 127 

71 150 … … 
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Question 3-1:  Does a visual inspection of you plot verify that the heights and 
weights for typical college students are linearly related?  Discuss the possible 
causes of the observed relationship. Why might individuals deviate from this simple 
relationship? 
 
Question 3-2:  One of the most powerful uses of a graph is that of prediction.  Say, 
for example, that you know the height of a college student but not his/her weight.  
We can make an "educated guess" and predict the weight of the student by using 
our graph and the trendline which represents the general relationship between 
height and weight.  Suppose that this person is 6' 2-½" (i.e., 74.5”) tall.  What 
weight is predicted for a 74.5” tall college student?  Use the formula for your 
trendline to make this determination.  Show all the work in your calculation.  
Remember your significant digits! 
 
Question 3-3:  What differences do you find between the heights and weights of the 
groups shown in Figure 1 (the Chicago Bears) and on your graph (for college 
students)?  What might be the causes of these differences?  Do the lines drawn 
through the data in both graphs look like they are pieces of the same overall 
relationship?  Explain. 

 
 
PART 4:  NON-LINEAR RELATIONSHIPS 
 
Not all physically-interesting relationships are linear.  For example, the table below shows the 
annual amount of U.S. Government expenditures from 1850 to 2010 versus year which, you will 
shortly see, reflects a very non-linear relationship. 

 
U.S. Government Expenditures 

Year $ Year $ 

1850 29,000,000 1960 97,284,000,000 

1860 78,000,000 1980 590,941,000,000 

1880 304,000,000 1990 1,252,990,000,000 

1900 629,000,000 2000 1,788,950,000,000 

1920 6,785,000,000 2010 3,457,080,000,000 

1940 10,061,000,000 … … 
 
 

EXERCISE 4-1:  Open a new Sheet in Excel by clicking the Sheet3 tab and enter the data 
from the table above.  (In your spreadsheet, use only two columns – year and expenditures.)  
Label the columns appropriately.  If the width of the columns in your spreadsheet is too 
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small, there might not be enough room for Excel to write in all the digits in the numbers 
and you will see “#########” instead.  If you see this, simply drag the right edge of the 
column letter that represents the expenditure data to expand the width of these cells.  Be 
sure to format the cells so that the numbers appear exactly as in the Table above. 

 
EXERCISE 4-2:  Now create a plot of expenditure (y-axis) versus year (x-axis).  Don’t 
forget to scale and label the plot axes appropriately.  Find a trendline which seems to 
represent the data.  Note that a linear trendline will definitely not work!  Excel offers you 
several other options (e.g., “polynomial”, “exponential”, “power law”, etc.  Find the one 
which best represents the data and show it on your plot.  Make sure to include the formula 
for the trendline on the plot.  What kind of trendline did you use? 

 
Hint:  Maybe this gives meaning to the phrase: 
 

“Our national debt is increasing at an _______________ rate!” 
 
 

EXERCISE 4-3:  In your Government Expenditures Excel spreadsheet, copy the contents 
of column B (Expenditures) to column C.  Label this column “$ in Scientific Notation”.  
Now use the Format Cells command to convert the expenditures in column C to scientific 
notation.  Make sure to specify the correct number of significant digits by adjusting the 
numbers of decimal places displayed.   
 
EXERCISE 4-4:  In your Government Expenditures Excel spreadsheet, create a “Log $” 
column in column D to display the expenditures in logarithmic form.  Again, be sure the 
correct number of significant digits is displayed. 
 
EXERCISE 4-5:  Now create a plot of the logarithm of the expenditures in dollars as a 
function of year.  Adjust the scales to fill the plotting space (if necessary), and add labels 
and a title.   Notice that the very non-linear relationship between Year and Expenditure 
seen in Exercise 4-2 has become much simpler looking.  Because of this, we would say that 
expenditures and time have a logarithmic relationship.  Create a linear trendline in your 
Year vs. Log($) plot.  Does it fit the observed relationship?  Don’t forget to put the formula 
for the trendline on the plot. 

 
Question 4-1:  What does your plot from Exercise 4-5 suggest that the annual 
expenditure will be in the year 2020?  Use the formula for the trendline you just 
created IN Exercise 4-5 to make this prediction. Show all work in your calculation 
and display your answer in Standard Notation, Scientific Notation, and logarithmic 
form.  Can we be confident in this prediction?  Explain why or why not. 
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PART 5: MAGNITUDES - AN ASTRONOMICAL EXAMPLE 
 
Astronomers use a logarithmic scale, called the Apparent Magnitude Scale, to quantify the 
brightness of stars as seen from the Earth.  These apparent brightnesses depend on both the intrinsic 
energy output of the stars and on their distances from the Earth.  Over 2,000 years ago the Greek 
astronomer Hipparchus catalogued the positions and brightness values of approximately 6,000 
stars visible to the naked eye.  The apparent brightness was described by a unit called a magnitude, 
with first magnitude being the brightest visible stars and sixth magnitude corresponding to the 
faintest.  Contrary to our intuition, the bigger (i.e., more positive) the apparent magnitude, the 
fainter the object.  The brightest object in our sky – the Sun – has the most negative apparent 
magnitude.  See the figure below. 
 
 

 
 
 
In the following Table we have listed the apparent brightness relative to the star Mizar for the ten 
stars that are closest to the Sun.  For example, the star Proxima Cen appears 2.54x10-4 times as 
bright as Mizar as seen from Earth.  There is nothing particularly special about Mizar.  It is just a 
convenient reference star, which is located in the handle of the Big Dipper. 
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Star Apparent Brightness 
relative to Mizar 

Proxima Cen 2.54 x 10-4 
Cen A 6.72 
Cen B 1.96 

Barnard’s Star 1.02 x 10-3 
Wolf 359 2.58 x 10-5 

BD+36 2147 6.66 x 10-3 
L726-8 A 6.56 x 10-5 
UV Cet B 4.12 x 10-5 
Sirius A 2.55 x 101 
Sirius B 2.20 x 10-4 

 
 

EXERCISE 5-1:  Open a new Sheet in Excel by clicking the Sheet4 tab.  Create an Excel 
spreadsheet with the Star names (column A) and apparent brightnesses (column B) from 
the table above.  Adjust the cell formatting so that the brightnesses appear exactly as in 
the table.  Calculate the logarithm of the apparent brightness for each of the stars and 
place it in column C.   

 
The apparent visual magnitude of a star is computed from its apparent brightness by the formula: 
 

𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  −𝟐𝟐.𝟓𝟓 × 𝐥𝐥𝐥𝐥𝐥𝐥(𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛) + 𝟐𝟐.𝟎𝟎𝟎𝟎 
 
where the constant 2.06 is needed to make these calculated magnitudes correspond to those derived 
by Hipparchus.  The magnitude scale was not purposely designed by Hipparchus to be logarithmic; 
it just reflects the sensitivity of the human eye.  The eye has evolved to be sensitive over a 
tremendous range of light levels, ranging from sunny days to a starlit night.  To accomplish this 
remarkable feat it uses a shorthand of its own.  Thus a large range of sensitivity yields information 
that is compressed logarithmically and sent to our brains.  Logarithmic scales are used in many 
other places, such as in describing sound levels (decibels) and earthquake vibration amplitudes 
(the Richter scale). 
 

EXERCISE 5-2:  Using your Excel spreadsheet, calculate the apparent magnitudes for 
each of the stars using the formula above and place the results in column D of your current 
spreadsheet. 

 
NOTE!  Just like logarithms, astronomical magnitudes are never expressed using scientific 

notation.  Always use standard notation and follow the significant digits rules. 
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TABLE 1:  EXERCISE 1-1 
 

Convert the values given in the Standard Notation into Scientific Notation 
 
 

Standard Notation Scientific Notation 

632,000,000,000  

632  

63.2  

632,000  

0.632  

0.000000632  

0.00632  

0.0000632  
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Figure1: TOP – Schematic representation of a photon of light working its 
way from the center of the Sun to an observer’s telescope.  BOTTOM - The 
visible-light spectrum of the Sun showing dark absorption lines against a 
continuous background. 

Lab B 
Energy Transport in Stars 

(Adapted from Contemporary Laboratory Experiences in Astronomy) 
 
 

 
 
PURPOSE: 
 
To explore the nature of photons and how they interact with gas atoms and to understand how the 
absorption and emission lines we see in stellar spectra are produced as a result of these interactions. 
To understand why it takes a photon a long time to travel from the center to the surface of the Sun. 
 
 
EQUIPMENT: 
 
Computer, calculator, and CLEA Computer Program Solar Energy Transport 
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Introduction 
 
As you have learned (or will!) in your lecture class, the light we see coming from the Sun and the 
stars originates deep within their interiors in a region known as the stellar core.  It is here that the 
temperatures and densities are high enough to allow nuclear fusion reactions to occur.  These 
reactions release huge amounts of energy, which provide the thermal pressure that helps a star 
withstand its own self-gravity and ultimately emerges from the surface of the star in the form of 
the light that makes the stars shine.    
 
The program that you will use in today’s lab (“Solar Energy Transfer”) is designed to teach you 
how energy flows from the energy-generating core of a star out into space.  Specifically, you will 
see how individual bits of light, known as photons, travel from the core of the Sun to its surface, 
and how they interact with matter on their way into space.  The interactions take place in two 
general regions with two different effects: 
 
1.) The interior – Before reaching the surface of a star, photons generated in the core of a star 

must travel through the main body, called the interior.  They travel a zig-zag path on their 
way out, as they are scattered back and forth by particles (mostly electrons) in the interior.  
See Figure 1.  So many interactions occur that, in the Sun, it takes literally hundreds of 
thousands of years for a typical photon to travel from the center to the surface! 

 
2.) The atmosphere – The thin layer of gas that makes up the outermost skin of a star is known 

as its atmosphere.  It is cooler than the interior and largely transparent so that most of the 
photons that reach the atmosphere after passing through the interior simply pass through it 
and out into space.  But some photons, with specific energies, are absorbed by atoms in the 
atmosphere.  This produces the dark absorption lines seen in the spectra of the Sun and the 
stars, as shown in the bottom part of Figure 1. 

 
 

Lab Procedure 
 
The computer program you will use includes several simulations of how photons behave as they 
interact with atoms of gas.  To begin, click on the Solar Energy Transfer program in the 
“Astronomy” folder on your Desktop.  Select Log In... from the menu and enter your name.  Do 
not use punctuation marks.  When the information is correct, click OK to continue. 
 
EXERCISE 1: ENERGY FLOW OUT OF THE SUN AND STARS 
 
In this first exercise, the “FLOW” simulation, you will observe how a photon of light works its 
way up from the center of the Sun (or other star) towards its surface.  You will be shown a 
two-dimensional slice of the interior of a simulated star and observe how a photon diffuses outward 
from the core and how the numbers of layers of atoms used to model the simulated star affects the 
amount of time it takes for a photon to escape into space. 
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As photons travel outwards from the core of a star, they interact with the gas particles.  In a hot 
dense gas like the interior of the Sun, most atoms in the gas are ionized. I.e., their electrons have 
been stripped off, leaving behind a positively charged ion, and are able to move independently 
through the gas. These are known as free electrons.  (Electrons still attached to their atoms are 
called bound electrons.) There are three primary types of interactions that occur for photons 
traveling through such a gas: 
 

1. “Electron scattering” – which occurs when a photon encounters a free electron.  The 
photon is absorbed by the electron and then immediately re-radiated in some random new 
direction (as if it had simply scattered off the electron).  The photon may gain or lose some 
energy due to this interaction. 

 
2. “Bound-Free Absorption” – in which a photon is absorbed by an atom.  The extra energy 

absorbed into the atom can ionize it, causing the atom to eject an electron.  This free 
electron can recombine with another ionized atom some time later giving rise to the release 
of a new photon in some random direction. 

 
3. “Free-Free Absorption” – in which a free electron in the vicinity of an atom can absorb a 

passing photon, thus making the electron more energetic.  The electron may later give up 
this extra energy at any time in the form of a new photon, again to be radiated in some 
random direction. 

 
The result of these processes is that, every time a photon interacts with matter, it is re-directed so 
that it travels in a new and complete random direction.  The resulting zig-zag path is called 
random walk.  This is graphically demonstrated in the FLOW Simulation. 
 
Step 1:  Start the program 
 
Click on Simulation, then Flow, then 1 Photon to start the energy FLOW simulation.  
 
Step 2:  Perform a 5-layer simulation 
 
Click Parameters, # of Layers… then type in “5” and click OK.  Press Run Simulation and then 
observe the photon as it works its way out from the interior of the star to its surface and escapes 
into space.  The simulation will end when the photon escapes and the number of times the photon 
interacted with an electron will be listed on the screen (“Interactions”).  Record the number of 
interactions in the appropriate column of Table 1 (in the row labeled “Trial 1”).  Repeat two more 
times (Trials 2 and 3) end enter the number of interactions into Table 1.  After you have completed 
three trials, compute the mean number of interactions and enter it Table 1.   
 
Note: Under Parameters, Trails you have the option of tracing out the photons’ crooked path.  
Trails are visually interesting, but remember that photons are not "eating" their way out of the star 
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in any sense, they are simply bouncing around. Typically, the program is run with Trails set to 
No. 
 
Step 3:  Perform 10, 15, 20, 35, and 50-layer simulations 
 
Now repeat Step 2 using simulations containing 10, 15, 20, 35, and 50 layers of atoms.  Perform 
3 trials for each model and enter the results in Table 1. 
 

Table 1: Flow Simulation 

# of layers n 5 10 15 20 35 50 

Trial 1: # of interactions             

Trial 2: # of interactions             

Trial 3: # of interactions             

Average             

n2             
 
 
Step 4:  Analyze the data 
 
Using either the graphs provided at the end of the lab manual or Excel (as per your instructor’s 
directions), make a plot of the number of interactions (y-axis) as a function of the number of layers 
in the simulation (x-axis).  Sketch in a smooth curve that best fits your data.  If you are using 
Excel, use the Trendline feature and the Power option.  Be sure to show the equation of your 
Power fit on the plot.  
 
It can be shown theoretically that the average number of interactions that occurs before a photon 
can escape is very nearly n2, where n is the number of layers in the model.  Complete the last row 
of Table 1 to compare your results with this prediction.  
 
 

Question 1:  How do the calculated values of n2 compare with the average results 
from the simulations?  If they are different, why?  If you used Excel and fit your data 
with a “Power” Trendline, then the exponent in your Trendline equation will be 2 if 
your data agree exactly with the n2 prediction.  Is this the case?  Are your results 
consistent with the prediction?  (In answering this question note that there is a 
randomness to the scattering process.  Scattered photons aren’t aimed at any 
particular direction, so whether an atom happens to be in their way is a matter of 
chance.  Think of it this way:  If you flipped a coin 4 times, would you always expect 
to get 2 heads and 2 tails?  What if you flipped it 40 times?) 
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Question 2:  Write the average number of interactions needed for the 50-layer model 
on the blackboard.  When the whole class has done this, average the results.  How 
does the class average compare with 2500 (which is 502)?  Is this bigger sample of 
results consistent with the prediction?  (NOTE: you may have to come back to this 
question later, when everyone has had a chance to record their results on the board. 

 
You will have noticed that the time required for a photon to escape from the interior of the star got 
longer as the number of layers in the simulation increased.  Luckily for you, we stopped at 50 
layers. In a realistic model, the size of the layers would be comparable to the separation between 
atoms and many (MANY!) more than 50 layers would be required. However, since the lab period 
does not last for a million or so years, we limited the demonstration to 50 layers.   
 
Click Return to end the FLOW Simulation 
 
 
Once a photon gets close to the surface of a star, and enters its atmosphere, it still has to escape 
into space. As noted in the Introduction, the atmosphere is essentially transparent to most photons 
and they easily pass through it. However, if the energy of a photon happens to match the 
“excitation energy” of an atom in the atmosphere, then the photon will be absorbed by the atom 
and later re-radiated in some random direction (similar to what you observed in the simulation 
above).  The “excitation energy” is the energy required for an electron bound in an orbit around 
an atom’s nucleus to move to a higher orbit.  Once the electron moves to the higher orbit, it 
immediately jumps back down to the lower orbit, releasing the photon in a random direction.  In 
the simulations below, photons that match an atom’s excitation energy are called line photons.  
If a photon’s energy is not properly matched to the atom, the photon passes through the gas largely 
unaffected.  These are called continuum photons.  As will see, this difference determines the type 
of spectrum we see when we observe photons emerging from a cloud of gas 
 
 
EXERCISE 2: A CLOSE-UP STUDY OF PHOTON/ATOM INTERACTIONS 
 
Click on Simulation and choose Interaction.   
 
This simulation allows you to study how individual photons interact with atoms.  The display 
portrays a field of atoms in a gas.  You can change the scale by selecting Large Scale or Close-
Up from the View menu.  You will see the electron clouds surrounding each atom.  These are the 
regions where the bound electrons are found.  The atomic nuclei, where the protons and neutrons 
reside, are buried deep in the center of each atom and are invisible at the scale of this simulation. 
These simplistic pictures are for reference only and are not drawn to scale.  Atoms are seldom so 
round because electrons orbit the nucleus in complex levels called shells which are not necessarily 
spherical. 
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Select Photon Type, Line to choose this type of photon to be sent through the gassy region.  Line 
photons have precisely the right amount of energy to be absorbed by the atoms.  Absorbing a 
photon adds energy to the electrons in the atom, and they are kicked into higher orbits.  After a 
very brief moment, they fall to a lower energy state and release a photon in some random direction.  
These photons are said to be undergoing bound-bound transitions, since the electrons remain 
attached to the same atom even when excited.  Click on the Run button to watch as line photons 
are sent from the left of the screen to pass through or interact with the atoms.  Click on the Stop 
button after 20 line photons are sent.  Fill in Table 2.  
 
Now repeat the process, but for continuum photons (Photon Type, Continuum).  Continuum 
photons have the wrong energy to interact easily with the atoms, and often pass through them 
without incident.  Occasionally, a continuum photon will scatter off of an electron, but not often. 
Click on the Run button to watch as continuum photons are sent from the left of the screen to pass 
through or interact with the atoms.  Click on the Stop button after 20 continuum photons are sent.  
Fill in Table 2.    
 

Table 2: Photon/Atom Interactions 

 Line Photons Continuum Photons 

Number of photons sent   

Number of photons scattered   
 
Press Return to exit the INTERACTION simulation. 
 
 
EXERCISE 3: LINE FORMATION 
 
Click on Simulation and then choose Line Formation. 
 
Each time you run this simulation, line photons are sent through a cloud of gas (the test tube).  
Photons enter the cloud from the left having come from a bright, but off-screen, object like the 
Sun.  Your detector is located at the right.  Your detector views the Sun through the cloud.  If a 
photon makes it through the cloud and is picked up by your detector the "Detected" counter 
increases.  The photon may interact with the cloud and get redirected and miss the detector.  This 
situation is scored "Not detected".  If you want to start over, you can reset the numbers to zero by 
pushing the Reset button. 
 
Line photons are responsible for the lines seen in a spectrum (hence the name).  If you observe 
them against a bright background such as a star's surface, they cause dark lines to appear, for as 
the simulation shows, most are scattered away.  This is an absorption spectrum.  But, if you 
observe line photons against an otherwise dark background, they cause bright lines in a spectrum. 
Such would be the case if you observed from a place that does not receive the direct photons, for 
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instance, from the bottom of the screen instead of the right side.  This is an emission spectrum.  
 
Select Parameters, # of Photons (for Run) from the menu and enter 20.  Click on the Run button 
to send them through the cloud.  Record your results in Table 3. 
 

Table 3: Line Formation 

Number of photons sent  

Number of photons detected  

% of photons detected  

 
Click Return to exit the EMISSION Simulation. 
 
 
EXERCISE 4: CONTINUUM PHOTONS 
 
Click on Simulation and then choose Continuum.   
 
This configuration is the same as in the previous exercise, but this simulation uses continuum 
photons instead of line photons.  Such photons do not have the precise energy required to “excite” 
an electron in an atom to a higher orbit.  The photons provide either too much or too little energy 
to excite the electrons.   As a result, these photons pass through a cloud of gas easily, except for 
occasional scattering by free electrons. 
 
Continuum photons give rise to the solid continuous rainbow of colors in a spectrum. 
 
Select Parameters, # of Photons (for Run) from the menu and enter the number 20.  Click on the 
Run button to send them through the cloud.  Record your results in Table 4. 
 

Table 4: Continuum Photons 

Number of photons sent  

Number of photons detected  

% of photons detected  

 
Click Return to exit the CONTINUUM Simulation. 
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EXERCISE 5: EXPERIMENT MODE 
 
Select Experiment from the Simulation menu to start. 
 
In this final simulation, you will investigate the formation of an absorption line spectrum. You will 
shoot photons of a range of energies into a specific gas and determine the fraction which emerge 
unscathed and reach your detector.  When few interactions occur (as in the case of a continuum 
photon) many emergent photons will be detected.  When many interactions occur (as in the case 
of a line photon) few get detected because most are scattered away in other directions.  A plot of 
the fraction of photons detected as a function of energy (or wavelength) is essentially a plot of the 
absorption spectrum of the gas and is the same as what you might observe using a spectrograph 
attached to a real telescope. 
 
You have a number of different gases you can choose from for this study.  They include thin 
gaseous clouds of calcium (Ca), hydrogen (H), magnesium (Mg), oxygen (O) and sodium (Na). 
Each kind of atom has its own characteristic set of energies and thus each of these gases will yield 
a different absorption spectrum.  You will perform your experiment using two different gases 
and compare the results.   
 
Select the first gas of your choice using the Select Gas Atoms option under Parameters.  Enter 
the name of the gas in the third column of Table 5 below.   
 
Select Change Photon Energy from the Parameters menu to set the photon energy to 1.5 eV1.  
As you change the photon energy, the wavelength (the color) changes automatically since the two 
are related2.  You can reset the counters and statistics using the Reset button.  Be sure to reset 
the counters if you switch to a new gas or a different energy level. 
 
Send 15 photons through the gas at each energy level from 1.5 through 3.2 eV.  In Table 6, fill in 
the wavelength and the number of detected photons for each energy level as you proceed.  For 
example, if you send 15 photons through the gas at the 2.3 eV energy level and 5 are detected, 
enter a 5 into the Table.  Be sure to Reset the counters each time you change photon energy.  
 
Now choose a second gas and repeat the above measurements.  Enter the results in the last 

                     
1An electron-volt is the amount of energy added to an electron when it is passed through an accelerating potential of 
one volt.  It is a very small amount of energy. 

2If you would like to calculate the wavelength (in meters!) by hand, the equation is: 

𝜆𝜆 =
ℎ𝑐𝑐
𝐸𝐸

 

Where: h = Plank's constant = 4.14 x 10-15 eV second;  c = speed of light = 3 x 108 meters/second;  and E = energy 
of the photon in electron volts 
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column of Table 5. Be sure to record the identities of the gases you chose. 
 
 
After you have completed Table 5, make a separate graph of your results for each of the two gases.  
I.e., plot the number of photons detected (y-axis) vs. photon wavelength (x-axis).  Use the graphs 
provided at the end of the lab manual or an Excel worksheet, as directed by your instructor.  Draw 
a smooth curve through your data points.  Be careful of especially deep absorption features.  If 
you are using Excel, you can have Excel join the data points with a smooth line.  Although 
this is a crude spectrum, you should be able to see one or more pronounced dips in the number of 
photons detected.  The energy, and thus the wavelength, of the dips identify photon energies that  
 

Table 5: Experiment Mode 

       Gas =     Gas =  

Energy Wavelength Number Number 
(eV) (nm) Detected Detected 

1.5       
1.6       
1.7       
1.8       
1.9       
2.0       
2.1       
2.2       
2.3       
2.4       
2.5       
2.6       
2.7       
2.8       
2.9       
3.0       
3.1       
3.2       
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easily energize the atom.  Once energized, as you know from Exercise 3, the atoms will reemit 
the photons in random directions.  Most of the photons will move in directions away from an 
observer viewing the atom head on, i.e., away from their original paths before the interaction.  
 

Question 3:  Look at the two plots you just made.  Do you see any evidence for 
“lines” in the spectra?  (Note: The results in Tables 3 and 4 should remind you how 
to identify lines in a spectrum.) What energies and wavelengths do these correspond 
to? How do the two spectra compare? Can you tell them apart? Explain how the 
spectrum of a star might reveal the composition of its atmosphere.    

 
Click Return to exit the EXPERIMENT Simulation. 
 
Click Quit to exit the Solar Energy Transport program. 
 
 
 
 

Summary Questions 
 
Complete EITHER Question 4 OR Question 5 below.   
 

Question 4:  If this were a realistic attempt to simulate a photon escaping from the 
Sun, you would have to use a model with a much larger number of layers and the time 
you would have to wait for a photon to escape would be much longer.  In fact,   
detailed calculations show that light generated in the center of our Sun can take up to 
10,000,000 years to finally work its way to the surface!  But the speed of light is 
300,000 km per second.  At that speed, light should only take 2 or 3 seconds to get out 
of the Sun (the Sun's radius is about 700,000 km).  Using what you have learned in 
this lab, explain the apparent contradiction. 

 
Question 5:  Line photons are responsible for the bright lines in an emission spectrum 
as well as the dark lines in an absorption spectrum.  How can this one type of photon 
give rise to two strikingly different spectra?  Carefully explaining how this is possible.  
Use diagrams if possible to clarify your argument. 
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Lab C 
Introduction to Spectroscopy 

(Adapted from Laboratory Experiments in Astronomy, Johnson & Canterna) 
 
 

 
 
PURPOSE: 
 
To examine the spectra of common light sources, learn how atomic spectra are related to atomic 
structure and see that the pattern of photons emitted by a hot gas can be used to identify the nature 
of the gas.  
 
EQUIPMENT: 
 
Transmission grating, meter stick, compass, ruler, calculator, and gas discharge lamps with power 
supplies. 
 
 
 

 
Figure 1:  The three types of spectra 

  



C-2 
 

Introduction 
 
An atom consists of two basic regions, a central nucleus (containing subatomic particles called 
protons and neutrons) and a surrounding electron cloud (containing electrons). Although not a 
strictly correct interpretation, we can imagine that the electrons in the cloud orbit the nucleus, 
somewhat like planets orbiting a star. The positive electrical charges of the protons in a nucleus 
attract the negatively charged electrons in the cloud, holding an atom together. Due to the laws of 
quantum mechanics, the orbit that a particular electron will occupy depends on its energy. 
Electrons with small amounts of energy must occupy orbits close to the nucleus, while electrons 
with more energy may occupy more distant orbits. The smallest orbit that an electron can occupy 
is called its ground state. Because of the importance of the electron’s energy, physicists more 
commonly refer to their orbits as energy levels. 
 
Electrons prefer to be in their ground states but, by the addition of energy, can move to higher 
orbits. In this case, the electron is said to be in an excited state. Once there, however, the electrons 
will spontaneously jump back down towards the ground state, often stopping momentarily at 
intermediate levels on the way. Each time an electron jumps down to a new level, it must shed 
energy, usually by emitting a photon of light. The energy of the photon will be equal to the energy 
difference between the two levels. For example, suppose the energy of an electron in an upper 
orbit is Eu, and the energy in the lower orbit to which it jumps is El.  Then, when it makes the 
jump, it must give up an amount of energy equal to Eu – El.  Therefore it emits a photon with this 
corresponding energy. In general, the energy of a photon is given by: 
 
 𝐸𝐸𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =

ℎ𝑐𝑐
𝜆𝜆

 (1) 

 
where h and c are Planck's constant and the speed of light, respectively. Thus, a jump from level  
u to level l produces a photon with wavelength 
 

 𝜆𝜆 =  
ℎ𝑐𝑐

𝐸𝐸𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
=  

ℎ𝑐𝑐
𝐸𝐸𝑢𝑢 −  𝐸𝐸𝑙𝑙

 (2) 

 
By measuring the wavelength of an excited atom's emitted photons, we can calculate the energy 
differences between the orbits for all values of n.  These differences are unique for each type 
of atom and can be used to identify the atom.  
 
 

Lab Procedure 
 
In this experiment, you will measure the wavelengths of photons emitted by hydrogen and by a 
“mystery gas,” which you will attempt to identify by its unique spectral signature. The emission is 
produced by running an electrical current through a tube of gas (a discharge tube). The energy 
supplied by the current knocks the electrons in the individual gas atoms out of the ground state and 
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up into one of the excited levels. As the electrons spontaneously jump back towards the ground 
state, they emit photons at specific wavelengths. The glow that you will see from the gas tube 
results from these emitted photons. The set of photons emitted from a glowing gas are referred to 
as the gas’s emission lines. You will also examine the emergent spectrum from several common 
sources of household lighting. 
 
 
EXERCISE 1:  The Hydrogen Spectrum 

In the simplest of all atoms, the hydrogen atom, the nucleus consists of a single proton and the 
electron cloud contains a single electron. Figure 1 schematically illustrates the hydrogen atom. The 
single proton is at the center and the single electron may occupy one of the discrete orbits 
corresponding to the energy levels (or orbits) n = 1, 2, 3… The n = 1 orbit is hydrogen’s ground 
state.  Note that hydrogen has many energy levels and only the first six are shown in Figure 1 
 
The wavelengths shown in Figure 1 (in units of nanometers, or nm) are those corresponding to the 
photons that would be emitted by an electron jumping between the two energy levels connected 
by the solid lines. Notice that jumps ending at the n = 1 level (called the “Lyman series”) produce 
photons with ultraviolet wavelengths, and those ending at n = 3 (“Paschen series”) produce infrared 
photons.  Neither of these can be directly observed by the naked eye. The n = 2 level, however, is 
the “Goldilocks” level. Electron jumps ending at n = 2 produce photons in the optical spectral 
region, and thus are visible to the naked eye. These are known as the “Balmer series” or the 
“Balmer lines.” There are many other series of transitions involving higher energy levels than 
shown in the figure. These involve photon energies increasingly far into the infrared region. 
 

Figure 2: Energy levels in a hydrogen atom 
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First, you will view – and measure the wavelengths of – three of the emission lines of hydrogen.  
In particular, we will view the “Balmer” emission spectrum. The three emission lines you will see 
– red, blue-green, and violet – all come from electron jumps that end at the n = 2 energy level, as 
follows: 

n = 3 → 2: [red] 
n = 4 → 2: [blue-green] 
n = 5 → 2: [violet] 

 
Some of you may have really ultraviolet-sensitive eyes and see a fourth line, corresponding to 
 

n = 6 → 2: [really violet] 
 
You will accomplish the measurements by using a simple spectrometer, which is shown 
schematically in Figure 2 on the next page. With this setup, you will view the hydrogen discharge 
tube through a diffraction grating, which is a piece of transparent glass or plastic with a large 
number of parallel grooves etched closely together on its surface. The grating acts much like a 
prism, dispersing light into its component colors. As light from the discharge tube passes through 
the grating, its direction of travel is altered so that it appears to the eye to originate from a location 
displaced from the discharge tube.  The size of the displacement depends on the wavelength of 
the emission line. 

In your experimental setup, position the meter stick so that the hydrogen discharge tube is as close 
to its center as possible.  The emission lines will be seen projected against the meter stick.  One 
spectrum will appear projected to the right of the center of the meter stick and an identical spectrum 
projected to the left.  Even slight misalignment of the grating in your spectroscope can shift the 
spectrum to the left or right on the meter stick. To correct for this you must average the distance s 
of a line in the left spectrum from the center of the meter stick with the corresponding distance in 
the right spectrum. The easiest way to do this is to record the number from the meter stick 
corresponding to the left position of a line and then the right position.  Record these values to 
the nearest millimeter in the top part of Table 1. The positive difference (or absolute value of the 
difference) of these numbers divided by two gives the best estimate of s. If you see two violet lines 
of hydrogen, measure the position of the brighter one. 
 
Now measure the value of x to the nearest millimeter.  As indicated in Figure 2, this is the distance 
between the front face of the meter stick and the transmission grating: 
 

x = _______ cm 
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The wavelength of the individual emission lines, λ, can now be determined from the following 
relation: 

 𝜆𝜆(cm) =  
𝑠𝑠(cm)

𝑔𝑔(grooves) × �𝑥𝑥2(cm) +  𝑠𝑠2(cm)
 (3) 

 
where x is the distance between the grating and the front face of the meter stick, s is the projected 
distance between the emission line and the discharge tube, and g is the number of grooves per 
centimeter on the diffraction grating.  The wavelength λ will be in centimeters if x and s are in 
centimeters and g is in grooves/cm.  Your diffraction grating has g = 5,000 grooves/cm. 
 
Calculate the wavelength for each emission line you observe in centimeters using Equation 3 and 
then convert these to units of Angstroms (1 Å = 10 -8 cm). Record these data in the lower part of 
Table 1.   
 

Question 1:  How close were your measured wavelengths to the actual values?  The 
red line (known as “Hα”) has a wavelength of 6563 Å, the blue-green line (“Hβ”) has 
λ = 4861 Å, and the violet line (“Hγ”) has λ = 4341 Å.  What are the absolute 
differences between your results and these true values?  What are the percent errors?  
The percent error is given by: 

 

 % error =  
actual value− observed value

actual value
 × 100% (4) 

 
Do you notice any sign of a “systematic error” in your results?  (I.e., are all 
measurements too high or too low?)  If so, any ideas on how this might arise? 

 
 

Figure 2: Experimental setup 
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EXERCISE 2:  Identifying a “Mystery Gas” 

Now switch your hydrogen discharge tube with a tube supplied by your instructor, containing a 
“Mystery Gas.” (Labeled “A”, “B”, “C”.)  Be careful! The tubes are fragile and the hydrogen tube 
may be hot.  If you are not comfortable switching the tubes, ask your instructor for assistance.  
Observe your Mystery Gas through the diffraction grating and fill in Table 2. Measure the 
wavelengths of as many individual lines as you can.  (Add more lines to Table 2 if you need to.) 
Make sure to list which Mystery Gas tube you have chosen to examine (i.e., “A”, “B”, or “C”).  
Compare your colors and wavelengths with the atomic spectrum wall chart in the lab or with Figure 
3 at the back of the lab. 

Question 2:  What kind of gas do you think your mystery tube is filled with?  What 
features do you see that lead you to this conclusion?  Are there any observed features 
not consistent with your selection?   

 
 
EXERCISE 3:  The Spectra of Common Light Sources 
 
Go to the station at the back (or front) of the lab room, where your instructor has set up 
spectroscopes for you to observe the spectra of three common types of light bulbs: incandescent, 
LED, and compact fluorescent (“CFL”).  Study the spectra carefully and answer the following 
questions.   
 

Question 3:  What does the spectrum of the incandescent bulb look like? Describe its 
properties.  What similarities and differences do you see between this spectrum and 
those you observed in Exercises 1 and 2? Does this spectrum tell you something about 
the physical process the bulb uses to generate light?  

 
Question 4:  What does the spectrum of the LED bulb look like? Describe its 
properties.  What similarities and differences do you see between this spectrum and 
those you observed in Exercises 1 and 2? Does this spectrum tell you something about 
the physical process the bulb uses to generate light?  

 
Question 5:  What does the spectrum of the CFL bulb look like? Describe its 
properties.  What similarities and differences do you see between this spectrum and 
those you observed in Exercises 1 and 2? Does this spectrum tell you something about 
the physical process the bulb uses to generate light?  

 
Note, you may do a search on the internet to find out a little more about the types of bulbs you are 
looking at and the properties of their emitted spectra  
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*** EXTRA CREDIT *** 
Note: because this is extra credit, you may not ask your instructor for help! 

 
EXERCISE 4:  The Size of an Atom 
 
The size of an atom is determined by the size of its electron cloud.  For most atoms this ranges in 
radius from about 0.3 to 3 Angstroms. As per the discussion in the Introduction, this size can 
actually vary for a given atom, depending on whether its electrons are in excited states or not. For 
hydrogen, the electron is usually found in the ground (n = 1) state, which has a radius of 0.53 
Angstroms. This value, known as the “Bohr Radius” is usually considered to be the radius of a 
hydrogen atom. 
 

Question 6:  So, in more understandable term, how big is a hydrogen atom? Assuming 
the Bohr Radius, how many hydrogen atoms would you have to line up side-by-side to 
span 1 inch?  How many hydrogen atoms would it take to fill up the volume of a sugar 
cube, i.e., 1 cm3?  Show all your work and explain your calculations 
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Left Position Right Position s = (Right-Left)/2
(cm) (cm) (cm)

3 Red

4 Blue-Green

5 Violet

λ λ
(cm) (A)

3 Red

4 Blue-Green

5 Violet

TABLE 1: Hydrogen

Line Color

Line Color

n

n

Left Position Right Position s = (Right-Left)/2
(cm) (cm) (cm)

λ λ
(cm) (A)

Line Color

Line Color

TABLE 2: Mystery Gas ____
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Figure 3 



C-10 
 

  



C-11 
 

 

Lab Report Cover Page 
 

Spring 2019 
Mendel Science Experience 2151 

Astronomy Laboratory - Stars 
 
 
 

Lab C 
Introduction to Spectroscopy 

 
 
   
 
 
 
 
 
Name: ____________________________________________________________ 
 
 
Lab Section: __________   
 
 
Date: __________ 
 
 
 
 
 
  



C-12 
 

 
 
 
 
 



Spring 2019 
Mendel Science Experience 2151 
Astronomy Laboratory – Stars 
 

 

D-1 

 
Lab D 

The Telescope: Part 1 
 

 
 
PURPOSE:   
 
To study the ways in which light is refracted through lenses of various shapes and reflected from 
curved mirrors, leading to an understanding of the principles behind the function of an 
astronomical telescope.  To build and test a simple telescope using the Optics Bench 
 
MATERIALS: 

Optics Bench kit (including lenses, mirrors and light sources), cotton gloves, Optics Bench 
simulation program, Microsoft Excel 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Clockwise from top left : a 
selection of lenses;  Keck 10-meter 

reflecting telescope,  image 
formation in the human eye. 
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Introduction 
 
SOME BACKGROUND: 
 
In many ways, light can be thought of as a wave of energy propagating thru space (an 
“electromagnetic wave”). One of the properties of these waves is that they can change direction 
when they exit or enter a different medium as, for example, from air into glass or water. This 
property is called refraction. The amount of refraction of the light wave depends on a property of 
the medium known as the index of refraction. If you have ever looked into a fish tank or – as 
illustrated in Figure 1 – at a straw in a glass of water, you have probably noticed the strange affects 
that arise from this phenomenon. 

 
Now let’s look at what happens when light passes through a convex lens.  This is a smooth, 
transparent, circular piece of glass which is thicker in the middle than around the edges, as shown 
in Figure 2.  Light from a very distant point source (which could be a star) arrives at this lens from 
the left as a bundle of light rays parallel to the principal axis of the lens (dotted line).  The rays 
are refracted as they pass through the two surfaces of the lens and intersect on the right at point F, 
known as the focus or focal point, which is located a distance f  from the lens center.  This behavior 
gives rise to the general name for this type of lens, namely, a converging lens. The distance f is 
called the focal length and is often used to characterize a lens.  It is usually measured in meters, 
centimeters, or millimeters. Importantly, an image of the distant object, called a real image will 
be formed at point F. I.e., if a screen (or a piece of paper) were placed at point F, an image of the 
distant source would appear projected on the screen  
 

Figure 1:  Refraction 

Figure 2:  Light paths through a convex lens 

http://en.wikipedia.org/wiki/Refractive_index
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For astronomical uses, an important characteristic of a converging lens is its ability to gather and 
concentrate light into a small place. This is governed by the physical size of the lens and its focal 
length. It is pretty straightforward to imagine that the larger the lens, the more light rays it will 
intercept. The more light rays a lens can intercept and concentrate in one place, the brighter the 
image will be. Thus, bigger lenses can form detectable images of fainter objects. In fact, the amount 
of light a lens can intercept is related to the area of the lens, which is proportional to the radius R 
of the lens squared.  (Recall that the area of a circle is given by A = πR2.) 
 
Another way of characterizing a converging lens is by its f-number, which is given by: 
 

 f– number =  
focal length

lens diameter
 (1) 

 
The f-number of a lens is an important concept in photography.  Lenses with small f-numbers are 
known as “fast lenses” because they produce brighter images (and, thus, require shorter exposure 
times) than lenses with larger f-numbers. 
 
A different sort of behavior arises from a concave lens, which is a lens that is thicker around the 
edges than at the center, as shown in Figure 3.   This shape causes an incoming beam of parallel 
light rays to spread out and, as a result, this type of lens is known as a diverging lens.  Due to the 
divergence, the light rays appear to emanate from a position at the focal point F on the same side 
of the lens as the distant object.  Concave lenses do not form real images.  I.e., a screen placed at 
point F will do nothing except block the incoming beam of light! 
 

 
 
 
 
 
 
 
 
 

Figure 3:  Light paths through a concave lens 
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IMAGE FORMATION WITH CONVEX LENSES: 
 
We’ll now consider distant objects that are not point sources, but rather have a larger angular size, 
i.e., extended objects.  Light from a point on such an object spreads out, striking a convex lens as 
seen in Figure 4 below: 
  

 
The sample light rays 1, 2, and 3 that travel from the tip of the arrow through the lens all take 
different paths. Ray 1 starts out parallel to the principal axis of the lens (dotted line) and is refracted 
through the focus on the right side of the lens. Ray 2, which happens to travel through the center 
of the lens, is not refracted at all and continues until it crosses the path of Ray 1. Ray 3 travels in 
such a way that it passes through the focus on the left side of the lens and is refracted into a ray 
parallel to the axis of the lens and intercepts Rays 1 and 2.  If we trace rays from other parts of the 
object through the lens we will find that the lens forms an inverted real image of the object at di. 
Once again, this is known as a real image because, if a piece of paper or a CCD image sensor 
(such as in your camera or cell phone) were placed at this point, an image of the object would be 
seen or recorded. It can be shown – using basic geometry – that the location of a real image is 
given by:  
 

 
1
𝑑𝑑𝑖𝑖

=  
1
𝑓𝑓
−

1
𝑑𝑑𝑜𝑜

 (2) 

 
where do and di are the object and image distances, respectively, and f is the focal length of the 
lens. If an object is extremely far away (i.e., large do), then the image forms at the focal length.  
The human eye functions exactly as shown in Figure 4. The lens of our eye forms a real image on 
the back of our eyeball (the retina) and, yes, it is upside-down.  (See the figure on the first page of 
the lab.)   
 
Many of you have no doubt used a single convex lens to look at very nearby objects. This 
magnifying glass makes objects look larger because the lens changes the angle at which the light 
rays coming from the object enter our eyes. This allows the eye to form a focused image on the 

Figure 4:  Image formation with a convex lens 
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retina that is larger than would be possible otherwise. When the object is closer to the lens than its 
focal point, as shown in Figure 5 below, a convex lens will form a virtual image at the point from 
which the diverging rays seem to emanate which appears larger than the original object.  The image 
is called “virtual” (as opposed to “real”) because the light rays don’t really converge there and a 
piece of paper (or a CCD) placed at the location of the virtual image would not show an image.   
 

 
THE REFRACTING TELESCOPE: 
 
A refracting telescope uses two (or more) lenses arranged so that they share a common focal 
point, as shown in Figure 6 below.  These telescopes utilize the ability of converging lenses to 
both concentrate light from a larger area into a smaller area and to provide magnification of the 
resultant image.  Essentially, the larger objective lens gathers a lot of light from the source and 
produces a bright inverted real image.  This image is located at the objective’s focus for a very 
distant source, as illustrated in Figure 6. The eyepiece lens then magnifies that image into our 
eyes (or a camera).  The size of the objective lens determines a telescope’s light gathering power. 
 

Figure 5:  A convex lens as a magnifying glass 

Figure 6:  Two convex lenses making a telescope 



 

 

D-6 

Telescope eyepieces can also consist of concave lenses as shown in Figure 7.  The advantage of 
this arrangement is that the image viewed by the observer is not inverted. 

 
 
 
It can be shown that the magnification of these simple telescopes is given by the ratio of the 
objective lens to eyepiece lens focal lengths: 

 𝑚𝑚 =  
𝑓𝑓𝑜𝑜
𝑓𝑓𝑒𝑒

 (3) 

 
Telescopes usually come equipped with several eyepieces, of differing focal lengths, providing 
different levels of magnification. 
 
INTRODUCTORY QUESTIONS: 
 

Question 1:  About how long do you think the focal length of the lens in a human eye 
is?  How did you arrive at this estimate? 

 
Question 2:  Why do we see objects right side up if the image on our retina is upside 
down? 

 
Question 3:  In the days before smart phones and the internet, children used to amuse 
themselves outdoors on sunny days using single convex lenses to make small fires.  
Given what you have learned above, how is this possible?  
 
Question 4:  The Villanova Public Observatory, which many of you will use this 
semester, has an objective element with a diameter of 14” and a focal length of 
3900mm.  The focal lengths of the eyepieces on this telescope are 10mm, 15mm, 23mm, 
and 32mm.  What magnification is achieved with each of these eyepieces?  What is the 
f-number of the objective element?  Explain your results. I.e., what equations and inputs 
did you use? 

Figure 7:  A concave lens as a telescope’s eyepiece 
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Lab Procedure 
 

In this lab, you will investigate the properties of lenses and build a refracting telescope using both 
a computer simulation and a set of real lenses. 
 
Working with a Simulation: 
 
First let’s examine the properties of lenses using a simulation of an optical bench.   Begin by 
starting the program opticsbench.shtml found in the “Astronomy” folder on your computer.  You 
will be presented with the following screen 

 
The yellow line through the middle is the optical axis (or principal axis) of our system.  The 
buttons on the top allow you to pick various types of sources and the buttons on the bottom are for 
selection of various optical elements.  The yellow rectangle on the bottom left indicates the X and 
Y positions of the cursor on the screen. 
 

a. First let’s select an objective lens.  Put the cursor on the Lens box and left click the mouse.  
The box will depress but nothing much else will happen 

b. Move the cursor to the yellow line, somewhere near the left edge and click the left mouse 
button.  A double convex lens symbol will appear.  

c. Move the cursor over the lens until the cursor shows a hand symbol. 
d. Click the left mouse button and hold while dragging the lens until the X position in the yellow 

box shows about 2.00 (does not have to be exactly 2.00).  The screen will look something 
like this: 

Screenshot 1 
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e. Now click and drag either one of the two short vertical white lines to change the focal length 

of the lens to about 1.00 (fl=1.0). 
 

Question 5:  Imagine two convex lenses of the same diameter and the same 
composition.  One is much thicker in the middle than the other.  Which lens will have 
the shorter focal length? 

 
f. At this point we can select the Object box and place an object to the left of the lens. 
g. Put the mouse cursor on the tip of the object and click and drag it until the X-position is about 

0.4 and the Y-position (object height) is about 0.2.  The screen should look something like 
this: 

Question 6:  Notice that the real image formed by the objective lens (labeled “1”) is 
not located at the focal point of the lens.  This is because the object is relatively close 
to the lens.  Select the lens and slide it all the way to the right and back.  Does the 
position of the real image change with respect to the focal point as the lens-object 

Screenshot 2 

Screenshot 3 
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distance changes?  How?  Is this consistent with Equation 2?  How? When you are 
finished, restore the lens to a position at X=2 and the size (if it changed) of the object 
to Y=0.2 

 
h. Now let’s pick an eyepiece lens by selecting the Lens button again. 
i. Position the eyepiece lens to the right of the image already on the screen.  In reality, eyepieces 

have a smaller diameter than the objective lens, but in this simulation all lenses are shown 
with the same diameter.  The focal length of the eyepiece lens should already be 0.5 so we 
can leave it at that. 

j. Drag the eyepiece lens to a position of X~5.0.  Notice what happens to the image of the 
object formed by this lens (labeled 2) as you move the lens back and forth around this 
position.  Make sure you move the lens such that image 1 is view both closer to and farther 
away than the focal point of the eyepiece.  The screen should look something like this as you 
begin moving the eyepiece: 

 

 
Question 7:  Describe how the position of the eyepiece image (“2”) changes as the 
eyepiece is moved.  Note that the image formed by the eyepiece is “real” when it is to 
the right of the eyepiece and results from converging light rays.  It is “virtual” when it 
is to the left of the eyepiece and appears to be the origin of the diverging light rays.  
When image 1 is within the focal distance of the eyepiece, is image 2 a virtual or a real 
image?  When image 1 is outside the focal distance of the eyepiece, is image 2 a virtual 
or real image?  
 

You have just made a simulated refracting telescope.  In this simulation, the objective lens 
(on the left) gathers light from the object and forms a bright real image of it (labeled “1”). 
The eyepiece then acts as a magnifying glass, allowing the eye or a camera to reconstruct a 
magnified image of the object. 
 

Screenshot 4 
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Question 8:  This telescope will be “in focus” when the rays exiting the eyepiece are 
parallel to each other. Then the eye (or a camera) would be able to form (or record) a 
well-focused real image of the object. Where must the real image formed by the 
objective (labeled “1”) eyepiece be located relative to the eyepiece for this to occur? 

 
k. Now, put the cursor on the tip of the object arrow and left click the mouse to select it.  Then 

remove the object by hitting the Clear Active box in the simulator (or, alternatively, the delete 
key on the keyboard). 

l. Now select the Beam button and place the parallel light beam on the optical axis somewhere 
to the left of the primary (objective) lens.  This simulates the incoming light from a very 
distant object 

m. Move the eyepiece lens left and right until the light beam is parallel again.  This setup is 
analogous to that in Figure 6 the screen should look like this: 

 
n. Now change the focal length of the eyepiece lens and once again move the eyepiece left or 

right until the light beam that exits the eyepiece is parallel.  Try several focal lengths, both 
longer and shorter than the initial value of 0.5 

 
Question 9:  How does the size of the exit beam depend on the focal length of the 
eyepiece?  If we pick the lenses properly we can cause all of the light to come out of 
the telescope in a beam that is exactly the size of the pupil of our eyes.  Why would it 
be desirable to have the exit light beam no larger than the size of our pupils?  

 
 
  

Screenshot 5 
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Working With Real Lenses: 
 
OK, now let’s try the above experiments using the Optical Bench and actual lenses.  Please note 
that you should never touch the surfaces of the lenses with your bare fingers.  Use lens paper 
or cotton gloves, if available, or only handle the lenses by their edges. 
 

a. Mount the light source box at one end of the optical bench, so that it is located at 0.0 cm 
according to the metric scale on the side of the optical bench.  Plug it in.  An illuminated 
target should be visible. 

b. Mount the white screen at the other end of the optical bench, at a position of 112.0 cm.  
 
We will now use the convex lenses to form real images and test Equation 2. 
 

c. Remove the 250 mm focal length convex lens from the case and mount it approximately in 
the middle of the optical bench. 

d. Slide the lens back and forth until a sharp image of the light source appears on the white 
screen.  Adjust the position of the lens carefully to create the sharpest image.  This setup is 
analogous to that shown in Figure 4 and you are looking at the real image formed on the 
screen by the 250 mm convex lens!   Note the size and orientation of the image (i.e., rightside-
up or inverted). 

e. Measure the values of do and de (see Figure 4) and enter them, along with the image 
orientation, in Table 1. 

 
 

f. Repeat steps c, d, and e for the 200 mm, 100 mm, and 50 mm convex lenses.  Each time note 
the properties of the real images formed by the convex lenses. 

g. Now use Equation 2 to compute the focal length inferred for each lens by your measurements 
of do and de.  Enter the results in the last column of Table 1. 

 

Optical Element do di Image Orientation? f

250  mm convex lens
200  mm convex lens
100  mm convex lens
50  mm convex lens

Table 1
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Question 10:  How did you do? I.e., how did your computed focal lengths compare with the 
expected values (i.e., 250 mm, 200 mm, etc.)?  Can we trust Equation 2 to predict how a real 
image is formed by a convex lens?  Does the size of the real image produced by a convex 
lens depend on the focal length of the lens?  If so, how? 

 
Try the same experiment with a concave lens. 
 

h. Remove whichever convex lens is currently on your optical bench and insert the 150 mm 
concave lens between the light source and thee screen. 

i. Carefully move the lens around and try to form a real image on the screen. 
 

Question 11:  Were you able to form a sharp real image on the screen using the concave 
lens?  Is this consistent with discussion in the lab Introduction? How? 

 
Now it’s time to build an actual refracting telescope using your lens kit.  You will use the 250 mm 
lens as the objective and the 100 mm convex lens as the eyepiece 
 

j. Replace the white screen with the 100 mm lens at the far end of the optical bench, opposite 
the light source. 

k. Place the 250 mm lens somewhere between the light source and the eyepiece. 
l. Looking through the eyepiece, move the objective lens until you see a sharp magnified image 

of the light source. 
 

Question 12: Describe the image you see through the eyepiece.  What is its orientation?  
What is its approximate magnification? (Estimate this by eye.)  Is it sharp or blurry? (Note: 
if you answered “blurry”, go back and finetune the location of the objective!) 

 
Testing Your Telescope 

 
Now that you’ve built a refracting telescope, we’ll perform several tests to verify that we actually 
know what’s going on, and then answer the final questions about the telescope. 
 
Test 1:  From the simulations you did earlier, particularly those leading up to Question 8, you 
should have been able to predict where on the light bench the objective lens should be placed to 
allow the eyepiece to form a sharp focused image.  From that earlier discussion, you learned that 
a telescope is in focus when the real image produced by the objective is located at the focus of the 
eyepiece. Thus, the distance between the objective and the eyepiece is given by: 
 
 𝑑𝑑(objective-to-eyepiece) = 𝑑𝑑𝑖𝑖 + 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4) 

 
Let’s test this.  Record the positions of the light source, objective lens, and eyepiece lens in Table 
2. Now compute the observed distance between the objective and the eyepiece (i.e., Peyepiece – 
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Pobjective) and also record it in Table 2 (4th row).  Finally compute the expected distance between 
the two using Equation 4.  You’ll need to compute the value of di using Equation 2. Also, you can 
either use the nominal values for the lens focal lengths, or the values you computed in Table 1.  
(You might try both!) Record your predicted objective-eyepiece separation in the last row of Table 
2. 
 

 
 
Test 2:  If your predicted and observed eyepiece-to-objective separations agree, it indicates that 
the real image formed by the objective lens of the telescope does indeed lie at the focus of the 
eyepiece.  Test this by placing the white screen at the position of the eyepiece’s focus – without 
disturbing the positions of the eyepiece or objective lenses.  Carefully observe the image formed 
on the screen.  You can move the screen back and forth a bit to verify that the screen is close to 
the position of best focus. 
 
Test 3:  Remove the white screen and replace the eyepiece lens with the 150 mm concave lens.  
Refocus your telescope by once again moving the objective lens until the view of the light source 
through the eyepiece is at its sharpest.  Carefully study the properties of the image. 
 

Question 13:  So how well do we understand the refracting telescope?  Address the following 
questions in your response:  How well did the separation you observed between the eyepiece 
and the objective agree with the expectation (i.e., the prediction in Table 2)?  Did you use 
the nominal focal lengths for the prediction or the ones you measured in Table 1?  Which set 
agreed best with the observed separation?  Why do you think there might be a difference 
between the nominal values of the focal lengths and the ones you measured in Table 1? 
I.e.,what are the likely sources of error in your measurements? When you placed the screen 
at the expected position of the objective lens’ real image, did you see a clear sharp image? 
Could the sharpness be improved by moving the screen to a slightly different position? How 
far did you have to move it to get the best focus?  Do you think your result confirmed the 
predicted value of the eyepiece-objective distance?  What changed about the telescopic 
image when you replaced the convex eyepiece with the concave eyepiece.  Was this an 
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expected result?  Explain.  For terrestrial viewing, would you prefer a telescope with a 
convex or a concave eyepiece?  Explain your choice. How about for astronomical viewing? 
 
 
 

***EXTRA CREDIT*** 
(Note: Because this is for extra credit, you may not ask your instructor for help.) 

 
Question 14:  Using the setup for Test 3 above, measure the distance between the concave 
eyepiece and the objective lens.  Compute the expected separation, and compare this with 
your measurement.  Are they consistent?  Explain how you computed the expected distance.  
Use a drawing if it makes your explanation easier.  

 
 
 
 
 
 
 
 

Before leaving the lab please do the following 
 
1.  Put all components of the optical kit back in the box in the original locations and let the 
instructor verify that all parts are there. 
2.  Place the white gloves back in the proper container (small or large) on the front desk. 
3.  Turn in your lab report. 
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Lab E 

The Telescope: Part 2. 
 

 
 
PURPOSE:   
 
To construct a replica of one of the first telescopes used by the Italian physicist/astronomer Galileo Galilei 
in the early 1600’s.  To make observations with the telescope and characterize the properties of the lenses 
and the equality of the images. 
 
MATERIALS: 

“Galileoscope” telescope kit. 

 
 

  

Clockwise from top: Galileo’s 20-
power refracting telescope, Keck 10-
meter reflecting telescope, modern 
small ‘go to’ telescope. 
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The Telescope 
 
Sometime in the early 1600s, so the story goes, some Dutch children noticed that if you looked through 
two convex lenses held in line, you could see distant objects more clearly.  History, however, credits the 
Dutch opticians Hans Lippershey, Zacharias Janssen, and Jacob Metius with purposely making the first 
telescopes.  They applied for a patent for the device in 1609, but were refused because the device was so 
easy to duplicate.  Lippershey noted that “counting coins from afar” was a suitable use for the invention!  
A year later, the Italian scientist Galileo made many improvements to the telescope design and was one 
of the first to use it to systematically study the night sky.  Most telescopes of the time were used to observe 
terrestrial objects, such as ships popping up over the horizon, or as amusement.  Low power “telescopes” 
were also used as opera glasses.  These telescopes utilized a large “objective” lens and a smaller 
“eyepiece” lens and are known as refracting telescopes. 
 
As technology improved, it became possible to make bigger and bigger lenses for telescope use.  As the 
lens size increased, however, it became clear that there was a limit to how large a practical telescope lens 
could be.  The reason is that, above a certain size, the lens actually sags under its own weight and is no 
longer able to hold its shape under the force of gravity.  This size turns out to be about 40 inches in 
diameter.  Another problem with lenses is that they have two sides that need to be polished to the correct 
shape to form an image. 
 
Early in the history of optics making it was learned that a curved polished or silvered mirror could, like a 
lens, form an image.  Anyone who has looked at a silvered Christmas ornament has probably seen this 
effect.  The use of mirrors as the main optical element of a telescope has a number of advantage over the 
use of lenses.  Notably, using modern technology, very large, lightweight mirrors can be produced whose 
precisely-ground curved shapes can be maintained through the use of actuators mounted on the backs of 
the mirrors.  These kinds of telescopes are known as reflecting telescopes.  All large modern telescopes 
are of the reflecting design.    
 
Astronomers use telescopes to collect enough light to allow study of astronomical objects which are much 
fainter that the human eye can see.  For this reason, telescopes are sometimes called “light buckets.”   
 

Question 1:  Consider that the human eye has a maximum pupil opening of only about 7mm, 
compared to even a small telescope whose objective (front) lens might have a diameter of 
50mm or more. Which do you think could collect more light from a star?  Why? 

 
Question 2:  Is the amount of light collected directly proportional to the diameter of the 
instrument (i.e., eye or telescope), or to some other property? Explain. 

 
 
 
 

http://en.wikipedia.org/wiki/Hans_Lippershey
http://en.wikipedia.org/wiki/Zacharias_Janssen
http://en.wikipedia.org/wiki/Jacob_Metius
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The Galileo Telescope 
 

The telescope you will be building in lab today is a 2009 Galileoscope™, which was created to help 
celebrate the 400th anniversary (in 2009) of the Italian physicist/astronomer Galileo’s first use of the 
telescope to study the sky.  The Galileoscope is a model of the type of telescope used by Galileo and 
other Renaissance astronomers in the early 17th century, but with modern high-quality lenses (which are 
vastly better than the primitive optics of the 17th century).   You can read more about Galileo’s 
telescopes and discoveries at http://www.skyandtelescope.com/astronomy-resources/stargazing-with-
galileo/ 
 
This telescope is a two lens system, consisting of a large objective lens and a smaller eyepiece.  The 
main difference between Galileo’s telescope and the simple telescope you built in the previous lab is that 
the Galileo design uses a concave lens for the eyepiece, as shown in the figure below.  The advantage of 
this design is that a concave eyepiece keeps the image right side up and is more convenient for terrestrial 
viewing, which was the main use of telescopes in Galileo’s time. 
 
 

 
Notice the placement of the eyepiece relative to the focus of the objective lens compared with the simple 
telescope you constructed in the last lab. (The focus of the objective lens is behind the eyepiece lens.) 
 
It can be shown that the magnification produced by these simple telescopes is given by the ratio of the 
objective lens focal length to the eyepiece lens focal length: 
 

 𝑚𝑚 =  
𝑓𝑓𝑜𝑜
𝑓𝑓𝑒𝑒

 (1) 

 
Galileo’s original telescopes had a magnification of about a factor of 25, allowing him to observe details 
in the sky that had never been seen before. 
  

Figure 1: Image formation in Galileo’s telescope. 

http://www.skyandtelescope.com/astronomy-resources/stargazing-with-galileo/
http://www.skyandtelescope.com/astronomy-resources/stargazing-with-galileo/
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Lab Procedure 
 
Open the Galileo Telescope box and remove the top cardboard parts holder.  Remove the second layer 
cardboard tray and set to one side. 
 
The telescope parts should look like this:  
 

 
 
Take careful note of where all the parts are located and how they fit into the cutouts in the cardboard.  
You must return the parts to their proper places for the next class to use.   You must also have your 
instructor check that all of the pieces are in the proper place. 

 
Be sure to handle the lenses only by their edges, with a piece of tissue paper or cotton 

gloves, if available. 
 
 

O-rings and nut 

Lenses 
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Parts List (in order of assembly):  
  
A – telescope main tube halves (2) K – main eyepiece barrel halves (2) 
B – V-block bases/stands (2) L – auxiliary eyepiece barrel halves (2) 
C – 50-mm glass objective lens M – small main eyepiece lenses (4) 
D – ¼-20 tripod nut N – tiny, thin eyepiece ring/field stop 
E – focuser tube halves (2) O – large main eyepiece clamp ring 
F – small main-tube clamp ring P – small eyepiece clamp rings (2) 
G – small rubber O-rings (2) Q – tiny auxiliary eyepiece lenses (2) 
H – Sun-warning sticker R – Barlow lens tube 
I – large lens shade/dew cap S – auxiliary eyepiece cap 
J – large rubber O-rings (2)  

 
 
Step 0. 
 
Measure the diameter D of the objective lens and its focal length f in mm.  You can measure the focal 
length by pointing the lens out the window and forming an image on a piece of paper behind the lens.   
Remember (from last week’s lab!) that the distance to the object do, the distance to the image di, and 
focal length f are related by the formula  
 

 
1
𝑓𝑓

 =  
1
𝑑𝑑𝑜𝑜

 +  
1
𝑑𝑑𝑖𝑖

 (2) 

 
If do is very large (i.e., if you are looking out the window) you may use a simplified version of the 
formula to determine f, namely,  
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 𝑓𝑓 ≈ 𝑑𝑑𝑖𝑖 (3) 
 

Question 3:  What is the focal length f of the objective lens? 
Question 4:  What is the diameter D of the objective lens? 

 
 

Step 1. 
 
Lay the telescope main tube halves (A) on the table, perhaps setting one of them in 
the V-block stands (B).  Note that the objective lens (C) is actually two lenses 
cemented together.  One lens is thinner, and the other thicker.  Insert the objective 
lens into the groove at the end of one telescope main tube half so that the thinner 
lens points forward, out of the telescope as shown at right. 
 
Step 2. 
 
Insert the ¼”-20 tripod nut (D) into the slot in the telescope main tube 
half.  To seat the nut securely, make sure it is oriented with one of its 
“points” (not one of its flat sides) facing up, as shown in the photo at 
right.  
 
 
Step 3. 
 
Lay the two focuser tube halves (E) on the table, oriented with their 
interiors facing up.  Note that one end of each tube is rough on the 
inside, and the other end is smooth.  On one tube half, the smooth 
end has two U-shaped cutouts; they’re at the bottom left in the photo 
at left.  Orient the tube halves so that the two smooth ends match 
and the two rough ends match, as shown in the photo at right.  
 
 
Steps 4 & 5.  
 
Join the two focuser tube halves and hold them 
together.  Slide the small main-tube clamp ring (F) 
onto the focuser tube, with the wider end of the ring 
facing away from the end of the tube with the two U-
shaped cutouts.  Secure the two ends of the focuser 
tube with the two small rubber O-rings (G), which fit 
in the groves around each end of the tube.  The O-
rings look too small to fit, but they will stretch. 
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Step 6. 
 
Lay the completed focuser tube assembly into the back end of the main tube.  As shown below, make sure 
that the end of the focuser tube with the two U-shaped cutouts is protruding out the back of the telescope 
main tube, along with the main-tube clamp ring.  The other end of the focuser tube should lie between the 
two baffles at the back of the main telescope tube as shown in the photo below. 

 
Step 7. 
   
If not already done, peel the backing off of the Sun-warning sticker (H) and affix the sticker to the second 
half to the telescope main tube (A), about 25mm (1 inch) from the narrow end as shown in the photo 
below.   
 

DO NOT LOOK AT THE SUN!  SEVERE EYE DAMAGE WILL OCCUR 
(as well as damage to the optics of the telescope). 

 
 
Step 8. 
 
Place the second half of the main tube over the first half (the one already on the table or in the V-block 
stands), as shown below.  Make sure the objective lens and the ¼-20 tripod nut fit securely into their slots 
in the top half of the tube. 
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Step 9. 
 
Secure the body of the telescope together by sliding the main tube clamp ring (F) onto the back.  Place the 
two large O-rings (J) around the telescope main tube in the channels provided for this purpose (see arrows 
in photo below).  These will hold your telescope together more securely.  The O-rings will stretch enough 
to fit over the tube.  If you are unsure, please ask your instructor. 

 
Step 10. 
 
As seen above, attach the large lens shade/dew cap (I) onto the front.   
 
 
 

There are two eyepiece barrels.  The wider eyepiece (K), with the larger central opening is the 
main (or “modern”) eyepiece.  We will be using both for this lab, to determine how the different 

eyepiece designs affect the magnification and image quality of the telescope. 
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The “Modern Eyepiece” 
We’ll start out using a modern eyepiece consisting of a combination of several lenses.  A complicated 

“compound” eyepiece design such as this yields excellent images, but was not practical for Galileo 
because the lenses available to him contained so many flaws that, the more lenses used, the worse the 

image. 
 
 
 
Step 11. 
 
Open the lens packet, shown at right, and note that there are 6 
lenses included.  For the first experiment we will use the four 
larger lenses in the bottom two rows.  
 
 
 
 
Step 12. 
 
The four modern eyepiece lenses (M) are about 14 mm (a little over a half inch) in diameter.  Handle the 
lenses with the supplied tissue paper, cotton gloves or touch only the edges to avoid fingerprints.  Two 
lenses are flat on one side and concave – curved inward – on the other.  The other two lenses are convex 
– curved outward – on both sides.  Take one of each type of lens and place them together as show in the 
drawing.  Repeat with the other modern eyepiece lenses. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:  While wearing the cotton gloves, 
you can feel for the curvature of the lenses with your fingers to pick the correct lenses. 
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Step 13. 
 
Take one half of the modern eyepiece barrel (K).  Insert the two 
eyepiece lens pairs (from step 12) into the appropriately-sized slots of 
the barrel.  Be sure the flat sides of the lens pairs point away from 
each other (see picture on right). 
 
 
 
Step 14. 
 
Insert the tiny, thin eyepiece ring/field stop (N) into the thin slot in the 
modern eyepiece barrel half.  You should now have something that looks 
like the photo at right.  You are almost done with the modern eyepiece.    
 
 
 
Step 15. 
 
Join the second half of the modern eyepiece barrel (K) with the first half 
(the one you just assembled), taking care that the lenses and field-stop ring 
fit into the appropriate slots on the second half as you bring the halves 
together. Secure the halves with the large modern eyepiece clamp ring (O), 
which goes on the other end.  The completed modern eyepiece is shown in 
the photo at right.  
 
 
Step 16. 
 
Measure the focal length of this compound eyepiece by forming an image of some distant object on a 
piece of white paper, as you did for the objective in Step 0.  
 

Question 5:   What is the focal length fe of the compound Modern Eyepiece? 
 
 
 
 
 
 
 
 
 

ring/field stop (N) 
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Step 17. 
 
Insert the eyepiece fully into the end of the focuser tube, as shown in the following sequence of photos:  
 
 
 
 
 
 
 
 
 
 
 
Step 18. 

 
Observe a scene through the lab window.  Focus the telescope by sliding the focusing tube (E) back and 
forth to achieve a sharp image.  (The back of the eyepiece should end up about 2-1/2 inches behind the 
end of the telescope barrel.)  Note the properties of the images you see. Measure the magnification of the 
telescope with the modern eyepiece.  You may do this by eye or with the camera on your cell phone, with 
and without the telescope.   
 

Question 6.  Describe the quality and the orientation of the images you observe through the 
Modern Eyepiece.  Was it easy to find your target?  Was the image sharp?  (Remember to focus 
the telescope!)  Are the images upright or inverted? 
 
Question 7.  What magnification did you observe with the Modern Eyepiece?   Explain how 
you arrived at this value. 
 
Question 8.  What is the “theoretical” magnification of the telescope using the modern 
eyepiece?  (I.e., the value based on Equation 1 and your measurements of fo and fe.).  Does it 
agree with your observed value from Question 7?  Which one do you think is more accurate? 
(Show all steps in your calculation.) 
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The “Galilean Eyepiece” 
Now we’ll try a simple single-element eyepiece, similar to one that Galileo used. (Except that this one 
is made of plastic!)  It consists of a single small concave lens which yields upright images as shown in 

Figure 1. 
 
 
Step 19. 
 
The Galilean eyepiece uses one of the smaller lenses (about 10 
mm in diameter) located in the top row of the lens packet 
(shown at right).  The lens we will use is the one that is concave 
(inward curve) on both sides.  You can feel for concavity by 
touching both surfaces with the lens paper or cotton gloves 
covering your fingers. 
 
 
Step 20.  
 
To make the simple “Galilean Eyepiece,” first lay half of the auxiliary 
eyepiece barrel (L) on the bench and gently place the 10 mm, double 
concave lens in the grove at the center of the barrel.  Make sure it is 
standing straight up, perpendicular to the barrel.  This eyepiece can 
accommodate 2 lenses in this location, so be sure it sits squarely in the 
grove.  Then join the two halves of the auxillary eyepiece and place the 
auxiliary eyepiece cap (S) over the barrel, as shown below, and insert 
into the telescope.  With this eyepiece, your telescope will function like 
that shown in Figure 1.  
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Step 21. 
 
Once again observe a scene through the lab window. Move the focusing tube (E) back and forth until you 
get the best image.  (The back if the eyepiece will sit about 1-1/2 inches behind the telescope.)  Don’t 
expect a high quality image.  When Galileo made his telescope, the art of lens making was not very well 
perfected and lenses included many air bubbles and usually had a green tint from impurities.  Note the 
properties of the image you are observing.  Estimate the magnification of the telescope using the Galilean 
Eyepiece.  You may do this by eye or with the camera on your cell phone, with and without the telescope.  
Galileo’s original telescope had about 20x magnification.   
 

Question 9.   Describe the quality and the orientation of the image.  Is it easier or harder to 
use this eyepiece compared to the Modern Eyepiece?  How does the image quality compare 
with that seen through the Modern Eyepiece?  Which eyepiece would you rather use for your 
own observations?  Why? 
 
Question 10:   What magnification (m) do you observe with this configuration?  Explain how 
you arrived at this value. 
 
Question 11:   What is the focal length of the concave Galilean Eyepiece?  Since you cannot 
directly measure this quantity for a concave lens, you’ll have to estimate the focal length 
indirectly. I.e., use Equation 1 – you already know two of the three quantities in that equation. 
(Show all steps in your calculation.) 
 
 

 

 

Cleanup 

Please carefully disassemble the telescope and replace all parts in their proper locations. 
Do not close the box until your instructor has checked the inventory. 
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Lab F 
Classification of Stellar Spectra 

(Adapted from Contemporary Laboratory Experiences in Astronomy) 
 

 
 
PURPOSE: 
 
To become familiar with the appearance of the spectra of main sequence stars.  To learn how to 
classify the spectra of main sequence stars by comparing a spectrum with an atlas of spectra of 
selected standard stars.  
 
EQUIPMENT: 
 
Computer, and CLEA Computer Program Spectral Classification. 
 
 
  

The OBAFGKM Spectral Sequence 
Photo Credit: www.noao.edu 
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Spectral Classification 
 
The German physicist Joseph von Fraunhofer was, in the early 1800’s, the first to notice that the 
spectrum of the Sun was “missing” light at very specific wavelengths.  These features, now 
known as the Fraunhofer absorption lines, were then of unknown origin and were simply labeled 
with letters of the alphabet – as shown in Figure 1 below.   

It was not until late in the 19th century that astronomers were able to routinely obtain and examine 
the spectra of other stars in large numbers.  The astronomers Fr. Angelo Secchi and E.C. Pickering 
were among the first to notice that the patterns of absorption lines varied among the stars, but that 
distinct groups or “types” could be identified.  This gave birth to the process of spectral 
classification, in which stars are grouped together based on the prominence of certain specific 
absorption lines.  Building upon this early work, astronomers at the Harvard Observatory refined 
these “spectral types” and named them with letters A, B, C, etc.  They also embarked on a massive 
project to classify spectra – carried out by the trio of astronomers, Williamina Fleming, Annie 
Jump Cannon, and Antonia Maury – which ultimately lead to the classification of over a quarter-
million spectra. 
 
The early classification systems were based strictly on the appearance of the spectra, with no 
understanding of the physical reasons for the differences among stars.  This changed in the 1930’s 
and 1940’s when it came to be understood that the strength of a specific absorption line depends 
on the abundance of the type of atom which absorbs at that wavelength, which - in turn - depends 
on the chemical composition of the star and the temperature and density of its outer layers, where 
the absorption takes place.  Since it turns out that most stars have very similar chemical 
composition, the surface temperature of a star is the main determinant of the appearance of a 
stellar spectrum.   
 
The spectral classification system in widespread use today is a refinement of the work by the 
Harvard astronomers and is called the MK System.  It was introduced in the 1940's and 1950's by 
W.W. Morgan and P.C. Keenan of Yerkes Observatory.  This system has seven main temperature 
classes, OBAFGKM, which are ordered by decreasing temperature.  The O stars are the hottest 
stars (with temperatures around 40,000 K) and the M stars are the coolest (with temperatures 
around 3,000 K).  As a further refinement, the major temperature classes are subdivided into 
subtypes, e.g., B0, B1, B2, …B9.  These are also ordered by temperature so that, for example, a 
B0 star is hotter than a B5 star, and a B9 star in the sequence is followed by a cooler A0 star.  The 

Figure 1 
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MK System adds a second dimension to the classification scheme to take into account the fact that 
stars with the same surface temperature can have different sizes.  A difference in size between 
two stars with identical surface temperatures results in a difference in their intrinsic luminosities 
and can introduce subtle differences in their spectra - which can be discerned by a skilled classifier.  
A Roman numeral is added to the end of an MK spectral type to indicate a star’s luminosity class: 
an I indicates a supergiant star, a III indicates a giant star, and a V indicates a smaller Main 
Sequence star.  (There are also intermediate types II and IV.)  Our Sun is an ordinary Main 
Sequence star and has a classification in the MK System of G2 V. 
 
The distinguishing features of each spectral class, along with the stellar temperature range, are 
listed below.  Sample spectra are shown on the front page of the lab writeup.  Notice the 
systematic change in the appearance of the absorption lines moving down the spectral sequence 
from the O types to the M types. 
 

Why Spectral Classification is Important 

The spectral type of a star is so fundamental that an astronomer beginning the study of any star 
will first try to find out its spectral type.  Detailed analyses performed on many stars have shown 
that precise determinations of a star’s surface composition, temperature and density can be made 
from study of high quality spectra, combined with our current understanding of atomic physics.  
These fundamental stellar properties have been seen to correlate with stellar spectral type.  Since 
stars which have similar spectra have similar physical properties, the properties of an unknown 
star can be quickly inferred from past detailed studies of other stars of similar type.  A good 
spectral type thus provides a shortcut to knowledge of a star’s fundamental properties.  
 

Spectral 
Type 

Surface 
Temperature 

(°K) 
Distinguishing Features 

O 28,000 - 40,000 He II lines 

B 10,000 - 28,000 He I lines; 
H I Balmer lines in cooler types 

A 8,000 - 10,000 Strongest H I Balmer at A0;  Ca II increasing at cooler 
types; some other ionized metals 

F 6,000 – 8,000 Ca II stronger; H weaker; 
Ionized metal lines appearing 

G 4,900 – 6,000 
CaI II strong; Fe and other Metals strong, with 

neutral metal lines appearing; 
H weakening 

K 3,500 – 4,900 Neutral metal lines strong; 
CH and CN molecular bands developing 

M 2,000 – 3,500 Very many lines; TiO and other molecular bands; 
Neutral Calcium prominent; 
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Lab Procedure 
 
In this lab you will become an expert stellar classifier.  Specifically, you will examine the spectra 
of 20 unknown stars, determine the spectral type of each star, and record your results along with 
the reason for making each classification.  You will compare your unknown spectra with a 
representative atlas of standard spectra and, by looking at the relative strengths of characteristic 
absorption lines, you will be able to estimate the spectral type of the unknown stars to about a tenth 
of a spectral class, even if they lie between the spectral types of the stars in the atlas. To make life 
a little easier, we will at first confine ourselves to the classification of Main Sequence stars 
(luminosity class V).  Near the end of the lab, you will examine the effects of luminosity on the 
appearance of the stellar spectra.  
 
 
Part I - ENTERING STUDENT ACCOUNTING INFORMATION: 
 
Launch the Stellar Spectra program.  Click File, Log In to activate the Student Accounting screen.  
Enter your name (first and last).  Do not use punctuation marks.  When all the information has 
been entered to your satisfaction, click OK to continue, and click Yes when you are asked if you 
are finished logging in.  The opening screen of the Spectral Classification lab will then appear. 
 
 
Part II - SPECTRAL CLASSIFICATION OF MAIN-SEQUENCE STARS: 
 
Step 1.  Select File, Run, Classify Spectra.  You are now in the classification tool.  The screen 
that you see shows three (currently empty) panels, one above another with some control buttons at 
the right and a menu bar at the top.  The center panel will be used to display the spectrum of an 
unknown star, and the top and bottom panels will show you spectra of standard stars that can be 
compared with the unknown.  Let us now run through the features of the classification tool by 
classifying the first of the 20 unknown spectral provided for practice. 
 
Step 2.  Call up the spectrum of a practice "unknown" star by clicking on the File, Unknown 
Spectrum, Program List.  A window will appear displaying a list of practice stars by name.  
Highlight the star HD 124320, then click OK.  You will see the spectrum of HD 124320 displayed 
in the center panel of the classification screen, as shown in Figure 2. 
 
Until recently, spectra were displayed as photographs of the stellar spectrum, as in Figure 1, but 
modern spectrographs yield direct measurements of the intensity of light as a function of 
wavelength and it is now common practice to display a spectrum as a plot of intensity (or 
brightness) of light versus wavelength, as in Figure 2.   You can compare the two different display 
methods by choosing File, Preference, Display, Comb. (Photo & Trace).  The classification tool 
will now display the HD 124320 spectrum in both the photograph format (without the color) and 
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the intensity format.  These convey the same information but in very different ways.  In both 
cases, wavelength is displayed in units of Ångstroms (Å), where 1 Å = 10-10 meter.  In other 
popular wavelength units, this would correspond to 390 to 450 nm (nanometers) or 0.39 to 0.45 
μm (microns).  This is only a portion of the total optical spectral range (~3500–7000 Å), but 
contains sufficient spectral features to allow precise and accurate classifications.  The intensity 
can range from 0 (no light) to 1 (maximum light).  The highest points in the spectrum, called the 
continuum, are the overall light from the incandescent surface of the star, while the dips and dark 
features are the absorption lines produced by atoms, ions, or molecules further out in the 
atmosphere of the star.  You can measure both the wavelength and the intensity of any point in 
the spectrum by pointing the cursor at it and clicking (and holding) the left mouse button. (Try it.)  
The cursor changes from an arrow to a cross, making it easier to center on the point desired.  The 
“strength” of an absorption line is often gauged by its depth, i.e., the deeper the line, the stronger. 
 
Decide whether you want to do your classifications using the intensity format (which is 
recommended) or the photograph format.  If the former, select File, Preference, Display, 
Intensity Trace.  If the latter, select File, Preference, Display, “Grayscale” Photo. 
 
Step 3.  Now you want to find the spectral type of HD 124320 by comparing its spectrum with 
spectra of known type.  Call up the comparison star atlas by clicking the File, Atlas of Standard 
Spectra option.  A window will open up on which you will see numerous choices, but the atlas 
you want is the one on top of the list, Main Sequence.  Select it and click on OK to load the atlas. 
 
Step 4.  The 13 spectra in the Atlas will come up in a separate window – see Figure 3 – but only 
4 can be seen at one time.  You can look at the entire set by dragging up and down on the scrollbar 
at the right of the Atlas window.  Do this, and note that a sequence of representative types, 
spanning the range from the hottest to the coolest, are shown.  The wavelength range, though not 
indicated, is the same as in Figure 2. 

Figure 2 



   
 

F-6 
 

As you scroll through the standard stars, notice how the shapes and strengths of the absorption 
features vary systematically as you move from hotter types to cooler types, as shown in the set of 
photographic spectra on page 1 of the lab.  You should also notice that the shape and slope of the 
background spectrum upon which the absorption lines are superimposed (i.e., the continuum) also 
varies systematically with spectral type and, thus, stellar temperature.  This is a consequence of 
the blackbody radiation laws, specifically Wein’s Law, and will be discussed in a later lab. 
 
Step 5.  Now let’s use the comparison spectra to classify HD 124320.  Minimize the Atlas (if 
you want restore it, you can always double click on its icon) and look at the panels in the 
classification tool.  You will see that two of the comparison star spectra have already been placed 
in the two panels above and below the spectrum of your unknown star.  You should see the 
spectrum of an O5 star is in the top panel, and the spectrum of the next star in the atlas, a B0, in 
the bottom panel. 
 
If neither of these looks quite like a match to your unknown star, you can move through the Atlas 
by clicking on the button labeled Down to the upper right of the spectrum display.  Continue this 
until you get a pretty good match.  You should find that the best match is with spectral types that 
have very strong hydrogen lines (more about how to identify these will come later), and not many 
other features.  The stars with the strongest hydrogen lines are around spectral type A0. 
 
Because not all spectral types are represented in the Atlas, and because you want to get the 
classification precise to the nearest 1/10 of a spectral type (i.e., G2, not just G), you may have to 
do some interpolation.  Look at the relative strengths of the absorption lines to do this.  For your 
unknown star, for instance, you should note that the strong lines at 3970, 4101, and 4340 Å are 
similar in strength to both the A1 V and A5 V standard star spectra, but that the feature at 3934 Å 
is intermediate in strength between those two.  Thus the spectral type of HD 124320 likely lies 
between those of the two standard stars and is probably A2, A3, or A4.  If you think the strength 

Figure 3 
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of the 3934 Å line is exactly in the middle, choose A3, if you think it is closer to one standard or 
the other, then choose A2 or A4. 
 
Step 6.  If you want to do this in a more quantitative fashion, click on the button labeled 
Difference to the right of the spectrum display.  The bottom panel graph will change, showing the 
digital difference between the intensity of the comparison spectrum at the top and the unknown 
spectrum in the center, with zero difference being a straight horizontal line running across the 
middle of the lower panel. 
 
Look at the dips and valleys on this bottom panel and think about them for a minute.  If an 
absorption line in the comparison star is shallower than the line at the same wavelength in the 
unknown star, then the intensity at those wavelengths in the comparison star will be greater than 
those in the unknown.  So the difference between the two intensities will be greater than zero, and 
difference display will show an upward bump.  If the top panel is showing an A1 spectrum, for 
instance, and middle panel HD 124320, you should see a small bump at 3933 Å, indicating that 
the absorption line in the unknown is deeper than that in the A1 standard. 
 
By the same reasoning, if an absorption line in the comparison spectrum is deeper than one in the 
unknown star, then the difference display will show a downward dip.  Click on the Standards 
Down button to display an A5 comparison spectrum.  Note that the 3933 Å difference display now 
shows a dip, indicating that the absorption line in the unknown is shallower than that of an A5 
standard.  So it is somewhere in between an A1 and an A5 in classification. 
 
To use the difference display, page through the comparison spectra (using the Up and Down 
buttons) until the difference between the comparison and unknown star is as close to zero at all 
wavelengths as possible.  To estimate intermediate spectral types, watch to see when the display 
changes from bumps for some lines, to dips.  Since some lines get stronger with temperature, and 
others get weaker, you will see some lines go from bumps to dips, and some from dips to bumps, 
as you change the comparison spectra.  Try to estimate whether the amount of change places the 
unknown halfway between those two comparison types, or if it seems closer in strength to one of 
the two comparison types that it lies between. 
 
Step 7.  Record your choice for HD 124320 and your reasons in the data table provided below. 
Indicate which absorption lines lead you to your answer.  For example: “The strength of the 
lines at 3970, 4102, and 4340 Å are almost exactly those of type A1 or A5, and the strength of the 
3934 Å line appears to lie midway between them.” 
 
Step 8.  You have used one or more spectral lines for making a refined classification.  But what 
elements produced them?  For reference, you will want to identify the source of the line you are 
looking at.  Select File, Spectral Line Table.  You will see a window containing a list of spectral 
lines, as in Figure 4 below.  Drag this window to the side so that it doesn’t obscure the 
Classification Tool window.  Now, using the mouse, point the cursor at the center of any line in 
the spectrum (say the one at 4102 Å) and double-click the left mouse button.  A vertical red line 
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should appear on the screen and, if you've centered correctly, a double-dashed line on the line list 
to show you what the spectral line is.  For instance, the line at 4102 Å is a line from neutral 
hydrogen (H I).  See Figure 4. Verify this identification with your own Classification Tool. 
 

Question 1:  What elements are responsible for the strong lines at 3934, 3970, 4102, 
and 4340 Å seen on the spectrum of HD124320?  What are their precise wavelengths? 

 
Step 9.  You have now classified one spectrum.  Call up the next unknown spectrum by selecting 
File, Unknown Spectrum, Next on List.  You do not have to reload the spectral atlas.  Use the 
methods you have practiced above to classify the remaining 19 stars on the list.  Use the data table 
to record your results and your reasons.  Be sure to identify the particular absorption lines which 
lead you to your classification. 
 

Part III – LUMINOSITY CLASSIFICATION: 
 
Now that you have become skilled at stellar temperature classification, let’s take a brief look at 
luminosity classification.   
 
Step 1.  Bring up the spectrum of the practice star HD 24189.  Also, click File, Atlas of 
Standard Spectra and choose Luminosity at F5.  This will load a set of standard stars that all 
have temperature types of F5, but different MK System luminosity classes (i.e., roman numerals I, 
II, III, etc.  (See the Introduction!)  Assuming that HD 24189 is an F5 star, try to determine its 
luminosity class. 
 

Figure 4 
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Question 2:  What is the luminosity class for HD 24189?  How certain are you? 
(Note: it’s all right to be uncertain!)  What features of the spectrum distinguish the 
various classes? 

 
Step 2.  Repeat the above process for the first practice star HD 124320 and the Luminosity at A3 
standard stars, assuming that A3 is the appropriate temperature type. 
 

Question 3:  What is the luminosity class for HD 124320?  How certain are you?  
What features of the spectrum distinguish the various classes? 

 
Question 4:  Overall, do you think luminosity classification is easier or harder than 
temperature classification?  Or does it depend on the specific spectral class being 
observed? 

 

 

Some Classification Hints 
 
• One quick way to go through the spectral atlas, rather than using the Up and Down buttons is 

to open up the Atlas window and double click on a graph panel of the atlas representing the 
spectrum that you want to insert in the upper comparison panel of the Classification window.  
The atlas panel selected will be tinted blue to indicate that it is the one selected.  You can then 
minimize the atlas again to see the Classification window more clearly. 

 
• You can get close up views of the spectra by clicking on the Zoom In button to the right of the 

Classification window.  In zoom mode, the right and left arrows under the Zoom buttons can 
be used to pan along the spectrum to see wavelengths that are off the edges of the range of 
view.  The Reset button returns to full view of the spectrum. 

 
• When the Spectral Line List is visible, you can find a particular spectral line on a spectrum by 

pointing the cursor at an entry on the list and double clicking the left mouse button.  A vertical 
red line will appear on the spectrum display at the wavelength of the line. 

 
• When the Spectral Line List is visible, pointing the cursor at an entry and double-clicking the 

right mouse button will bring up a window with further information on the spectral line in 
question.  In many cases several ions produce spectral lines at about the same wavelength, so 
it will not be immediately clear what ion is producing a particular absorption line.  For 
instance, both Ca II and H I produce lines at a wavelength of about 3970 Å.  But H I lines are 
strongest in A type stars, while Ca II lines are strongest in the G and K type stars.  The notes 
provided in the spectral line information screens can thus be used to decide what ions are 
producing what absorption lines if you have a rough idea of the spectral type you are looking 
at. 
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Data Table: Spectral Classification 

Star Sp. Type Reasons 

HD 124320 A3 
H I 3970, 4102, and 4340 Å lines similar in strength to A1 and 
A5 types. Ca II 3934 Å line strength midway between those of 

A1 and A5 types. 
HD 37767   

HD 35619   

HD 23733   

O1015   

HD 24189   

HD 107399   

HD 240344   

HD 17647   

BD +63 137   

HD 66171   

HZ 948   

HD 35215   

Feige 40   

Feige 41   

HD 6111   

HD 23863   

HD 221741   

HD 242936   

HD 5351   
 
  



   
 

F-11 
 

 
Lab Report Cover Page 

 
Spring 2019 

Mendel Science Experience 2151 
Astronomy Laboratory - Stars 

 
 
 

Lab F 
Classification of Stellar Spectra 

 
 
   
 
 
 
 
 
Name: ____________________________________________________________ 
 
 
Lab Section: __________   
 
 
Date: __________ 



   
 

F-12 
 

 



Spring 2019 
Mendel Science Experience 2151 
Astronomy Laboratory – Stars 

 
 

 
G-1 

Lab G 
Effects of the Atmosphere on Astronomical Observations 

(Adapted from “The Hands-On Universe”, Volume I) 
 

 
 

 
PURPOSE: 
 

 To learn how the Earth's atmosphere affects our ability to measure the brightness of astronomical 
objects. 
 

EQUIPMENT: 
 

 TS-24 telescope simulation program and calculator or Excel spreadsheet. 
 

 

How the Earth’s Atmosphere Affects Star Brightness 
 

One of the most fundamental measurements that astronomers make is to determine the brightness 
of stars.  This process is called photometry.  The brightness of a star as seen from Earth is related 
to the star’s intrinsic energy output (its luminosity) and its distance from us – both of which are 
important things that we want to know.  Measuring brightness is one of the first steps towards 
determining the intrinsic properties of stars (or other astronomical objects).   
 
Unfortunately, most astronomical observations are done from the Earth’s surface, which means 
that a stars’ light must pass through a blanket of air before reaching our eyes or a telescope.  As a 
result, a star looks fainter and less steady than if it were observed from above the atmosphere.   
This effect is illustrated in Figure 1.  Astronomers describe this phenomenon as the combination 
of two effects: extinction refers to the overall reduction in the mean brightness of a star (as 
compared to the no-atmosphere case) and scintillation refers to the variation of the instantaneous 
brightness of the star about its mean value.  Scintillation is commonly referred to as the twinkling 
of the stars.  Note that the example in Figure 1 shows the star to be an intrinsically steady light 
source.  In reality, many stars are variable in their light output – but we’re not going to consider 
that complication here!  
 
In general, extinction and scintillation arise because photons of light can be scattered (i.e., bounced) 
off molecules in the atmosphere.  Turbulent masses of air, called cells, continually move across 
the light path between an observer and a star.  When a dense cell moves in front of the star, the 
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light will scatter more and the star will dim, much like car lights in fog.  When a less dense cell 
moves in front of the star, there will be less scattering and the star will appear to brighten briefly.  
There is always some scattering.  The variability in the amount, which has a timescale of much 
less than a second, is what causes scintillation. 
 
The general rule-of-thumb for astronomical photometry is that the more air you have to look 
through, the worse will be the effects of extinction and scintillation.  We characterize the “amount” 
of atmosphere we look through with the quantity airmass, which is related to the length of the path 
through the atmosphere that a photon of light must travel to reach our eye or telescope.  This is 
illustrated in Figure 2.  It is clear that airmass is much larger for objects close to the horizon than 
for those high overhead, near the zenith.  That’s why the Sun looks dimmer at sunrise or sunset 
than at noon:  the airmass is much larger and, as a result, the dimming effects of extinction are 
greater.  The formula for computing airmass is given by: 
 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1

𝑐𝑐𝑐𝑐𝑐𝑐(90 − 𝛼𝛼) (1) 

 
where α is the altitude of the object, i.e., its angle above the horizon, measured in degrees (°).   
 
 
  

Figure 1: Effects of the atmosphere on starlight 
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Figure 2:  A star’s “airmass” depends on its angle above the horizon 

 
The airmass is a minimum for a target seen directly overhead (at the zenith; altitude = 90°) and 
increases rapidly for objects close to the horizon.  Note that the formula above is an approximation; 
it yields an infinite airmass for an object on the horizon because it assumes a flat atmosphere.  
Since the Earth is curved and finite in size, true airmasses never get that large.  In general, because 
of the increasing severity of extinction and scintillation, an astronomer would be reluctant to 
perform photometry on an object with an airmass larger than 2. 
 
Fill in the following table, computing the airmasses for the altitudes listed: 
 

altitude airmass 
90°  
75°  
60°  
45°  
30°  
15°  
1°  

 
Note:  if you are using Excel to calculate the airmasses, you must convert the angles into units of 
radians.  For instance, if the angle θ is given in degrees, then the cosine of that angle is expressed 
in Excel as COS(RADIANS(θ)). 
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Question 1:  Some measurement uncertainties are called “random” errors, because they 
cause random variations around some mean value.  Other uncertainties are called 
“systematic” errors because they always bias a measurement in a specific direction.  
From the discussion above, does extinction produce systematic errors or random errors?  
Explain your answer.  Does scintillation produce systematic errors or random errors?  
Explain your answer. 
 
 

Lab Procedure 
 
The goal of astronomical photometry is to make the best possible measurement of a star’s 
mean brightness and then correct that value for the effect of extinction.   In this lab we will 
use a simulated photoelectric photometer to make such measurements and explore the effects of 
scintillation and atmospheric extinction on the apparent brightness of a star.  A photometer is a 
device that is mounted to the telescope and precisely measures the brightness of stars.  At the heart 
of high precision photometers there is a photomultiplier tube, or PMT.  The PMT is a highly 
sensitive device that is able to count the total number of individual photons from a distant 
astronomical source that enter the photometer during a specified time interval.  The brightness of 
an object is measured as the Count Rate, i.e., the number of photons received per second.  
 
A.  EXPLORING ATMOSPHERIC SCINTILLATION 
 

Step 1:  Set up the observatory 
 
Start the TS-24 computer program.  Click on OBS and choose the Villanova Observatory.  Click 
on TIME, choose Local Time (LST), then select 3:00 am in the morning of February 1, 1999.  
Click on OK when you are sure that the date and time are correct.  Next, we need to choose a 
telescope to view through.  Click on TEL and choose the 5" Finder telescope.  This telescope 
will make it easier to identify our target star; then we will switch to the larger telescope with the 
photometer attached to make our measurements 
 

When all this is done, you should see in the center of your screen the view through the telescope.  
In the upper left corner are the clocks.  One displays Local Time (it should read close to 03:00:00), 
and another displays Universal Time (UTC), which is the current time in Greenwich, England at a 
longitude of 0°.  On the right side of the screen are the positioning controls and the coordinates 
towards which the telescope is currently pointed. 
 

Click on the button that changes the Slewing Rate to 1 arc degree-increments.  This will allow the 
telescope to move quickly from place to place on the sky 
 

Below the view are the eyepieces that can be used with the Finder telescope.  They are classified 
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by their focal lengths 40mm, 30mm, 20mm, and 10mm.  Click on a few of them to see how it 
affects the field of view through the instrument.  Clicking on the "+" brings up a cross hair to help 
in fine tuning the position of the telescope. 
 

Step 2:  Point to our first target star, pi1 Boötes 
 
Next, we need to point the telescope to our scintillation target star.  The position of the star on the 
sky has been stored in the Observatory’s memory.  To retrieve it, click on DT-7 to activate the 
Digital Tracking control.  Click on the group STARS and then on the star pi1 Boötes. The 
coordinates displayed for this star should be: 

 
RA = 14h 41m 57s   Dec = 16° 24' 11" N 

 

where RA refers to “Right Ascension” and is a measure of the star’s longitude on the sky, and Dec 
refers to “Declination”, the star’s latitude.  If the coordinates don’t match, call your instructor!  If 
they do, then click Move To and the telescope will begin to move toward the desired coordinates. 
Alternatively, the telescope can be moved manually using the “+” and “–” buttons below the 
coordinate windows. 
 

Step 3:  Fine-tune the pointing 
 
Make sure that the 40mm eyepiece is installed, which gives the widest field of view.  When the 
telescope finishes slewing, there should be a star near the center of the eyepiece, near the center of 
the cross hair.  If not, check that the telescope is indeed pointing to the correct sky location.  Change 
to the 10mm eyepiece.  You may need to slightly adjust, i.e., fine-tune, the pointing of the 
telescope to bring the star to the exact center the field of view.  To do this, first change the slewing 
rate to arc-seconds.  If you lose the star altogether, simply repeat Step 2. 
 

Step 4:  Set up the photometer 
 

Now that we’ve got the target star where we want it, we’ll switch to the 15” telescope and its 
attached photometer.  Switch telescopes by clicking on TEL and choosing the 15" Photometric 
telescope.  You now see the view of the sky through the photometer itself.  The field of view is 
much smaller than with the Finder telescope, and instead of a cross hair you see a circle which 
represents the diaphragm of the system, i.e., the hole through which light passes onto the PMT.  
All of the light that passes through this diaphragm will be measured by the photometer.  Click on 
the button that changes the diaphragm size to 28'.  Other, larger-sized diaphragms are available, 
and would be useful for examining larger objects like galaxies or gas clouds.  For observing stars, 
however, we want a small diaphragm to minimize the possibility of contamination of our 
measurements by light from nearby stars.  Adjust the position of the telescope so that pi1 Boötes 
is centered in the chosen diaphragm. 
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Choose the visual filter by clicking V in the filter panel.  This restricts our measurements to the 
wavelengths of light near the middle of the range visible to our eyes.   
 
At this point, the screen should like this: 

 
If you don’t see a star centered in the diaphragm, call your instructor! 

 
Step 5:  First set of measurements 
 
Set the integration time to 0.01 sec.  This is the length of time that the photometer will count 
photons of light coming from pi1 Boötes.   Reset the TIME to 3:00 am.  (We want all of our 
measurements made at the same time so that the effects of extinction are the same.)  Then measure 
the brightness of the star centered in the diaphragm by clicking once on the Count button.  
Numbers will appear in the Photometer Log box that list the Universal Time of the observation, 
Filter, Integration Time, Diaphragm Size, and Photon Count, in that order.  Enter the Universal 
Time (UTC) and Photon Count in the first line of Table 1.   The critical number here is the Photon 
Count, which is the number of photons that reached the photometer during the integration time. 
Make 9 additional measurements.  For each measurement, reset the time to 3:00 am before 
performing the count so that all measurements are made thru the same airmass. 
 
Step 6:  Second set of measurements 
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Repeat step 5 above, this time with an integration time of 1.0 sec.  Record the data in Table 2. 
 
Step 7:  Third set of measurements 
 
Repeat step 5 above, this time with an integration time of 10.0 sec.  Record the data in Table 3. 
 
Step 8:  Data analysis 
 
For each of the 30 measurements just made, compute the photon Count Rate by dividing the Photon 
Counts by the integration time.  Enter the result in the 4th column of Tables 1, 2, and 3.   
 
Now compute the average Count Rate for each of the data sets.  Record it on the bottom line of 
Tables 1, 2, and 3, and also in Table 4.  If you are using Excel, use the AVERAGE function to 
make this computation. 
  
Now let’s look at the “scatter” in the observations. The “standard deviation” gives a quantitative 
description of the variability in the Count Rates.  The larger the standard deviation, the larger the 
variability and the more uncertain your average value.  If you are using Excel, just use the STDEV 
function to compute the standard deviation for each set of measurements, and enter the results in 
Tables 1, 2, and 3, and also in Table 4.   
 
If you are not using Excel, you will have to compute the standard deviation “by hand” using the 
following formula: 
 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  �average[(𝑥𝑥1 − 𝑥̅𝑥)2, (𝑥𝑥2 − 𝑥̅𝑥)2, (𝑥𝑥3 − 𝑥̅𝑥)2, … ] (2) 

 
where the xi are the individual count-rate measurements and 𝑥̅𝑥 is the average count-rate. 
 

Question 2: You should notice that the average Count Rates recorded in Table 4 for the 
0.01 sec, 1.0 sec, and 10.0 sec integrations are all very similar.  Why do you expect this 
to be the case?   Describe the change in the standard deviation with integration time.  
For which integration time are the individual measurements most precise (i.e., show the 
least scatter).  Considering the picture in Figure 1, explain why you expect this to be so. 

 
As you have realized by now, the average Count Rates are simply a description of how bright a 
star appears to be.  Astronomers use a more complicated system to describe the brightness of a 
star, called the “visual magnitude” system.  Compute the visual magnitude corresponding to each 
of the average Count Rate values in Table 4 using the formula: 
 
 Visual Magnitude =  −2.5 × log(Count Rate) + 18.0 (3) 
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and record them in the last column of the table.  This formula uses the base 10 logarithm, which 
is expressed as LOG10 in Excel. 
 
 
B. EXPLORING ATMOSPHERIC EXTINCTION 
 
Step 1: Set up the observatory and point to the target star 
 
EXIT then restart the TS-24 program.   This will reset all the counters in the program and assure 
the most accurate answers.  Choose the Villanova Observatory and set the local time to midnight 
on the night of February 2, 1999 – the day after the previous measurements were made.  Use the 
5" Finder telescope (TEL) and the DT-7 to point the telescope at the bright star called Arcturus in 
the STARS Group.  When the telescope finishes slewing make sure the telescope is pointed near 
Arcturus: 
 

RA = 14h 13m 57s   Dec = 19° 10' 15" N 
 

Step 2: Set up the photometer 
 

Switch to the 15" Photometric telescope (TEL) and fine-tune the position of the telescope so that 
the star is centered in the photometer’s diaphragm. Make sure the 28' diaphragm is chosen.  Also, 
select the visual filter by clicking V in the filter panel and set the integration time to 1 sec.    
 
Step 3: Make measurements 
 
 We will now observe Arcturus over a several hour period during the night to see how atmospheric 
extinction affects the light we receive.  You will see that at midnight on February 2, 1999, Arcturus 
was close to the eastern horizon, as seen from Villanova.  As the hours went by, Arcturus traveled 
higher in the sky, moving from east to west.  This is due to the rotation of the Earth.  Arcturus 
appeared close to the zenith (almost directly overhead) just before the Sun came up in the morning. 
 
Using Count, measure the brightness of Arcturus at a local time of 0:00:00 (i.e. midnight).  Record 
the Photon Count, and the star’s altitude (angle above the horizon) in the appropriate row of Table 
5 on Data Sheet 3. Round off the altitude to the nearest degree.  Now make 9 more measurements, 
successively increasing the local time by ½-hour for each measurement.  What you are doing is 
monitoring the brightness of Arcturus as it climbs higher and higher into the night sky. 
 
When all of your observations are finished, you can close the Observatory by clicking EXIT 
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Step 4: Data analysis 
    
Compute the airmass and visual magnitude for each of your Arcturus observations and enter the 
results in Table 5. 
 
Using Excel, plot visual magnitude (Y-axis) vs. airmass (X-axis).  The airmass axis should extend 
from 0 (at left) to about 4.  The magnitude scale should extend from about 3 (at bottom) to about 
0 (at the top).  Note that, in the magnitude system, smaller values mean brighter.  You should 
notice that the observed brightness of Arcturus drops off systematically as airmass increases and, 
thus, how strong the effects of extinction are!  Stars are much brighter when seen high in the sky 
than when seen near the horizon. 
 
As noted earlier, one of the goals of photometry is to CORRECT for the effects of extinction, not 
just notice that they are present.   I.e., even though our observations were made from Earth’s 
surface, we want to estimate the brightness a star would have if it were observed from above 
the atmosphere.  This means extrapolating our measurements back to a value at airmass = 0.  On 
your graph, you should see a simple linear relationship between airmass and visual magnitude.  
Use a ruler and extrapolate the visual magnitude back to an airmass of zero.  Draw the line of 
extrapolation on your plot.  This is your estimate of the visual magnitude of Arcturus as seen from 
above the atmosphere.  If you are using Excel, use the Trendline feature of Excel to fit a linear 
trendline to the magnitudes.  Then use the resultant Trendline formula to compute the magnitude 
at airmass = 0 (this will be the intercept in your linear Trendline formula). 
 

Question 3:  What is the corrected visual magnitude for Arcturus?  (I.e., the value that 
you would estimate for Arcturus if it could be observed from above the atmosphere, i.e., 
at airmass = 0).  How close is this to the accepted value for Arcturus?  (Go into your 
favorite web search engine and type something like “visual magnitude of Arcturus” to 
find out what the accepted value is.)  Indicate what website you used for your results.  
You should be within about 0.5 mag of the true value.   

 
 
C. THE EFFECT OF SKY BRIGHTNESS 
 
One final effect must be considered when trying to achieve the highest accuracy in stellar 
photometry – that of light added by the atmosphere.  We have all noticed that some places have 
darker nights than others and, as a result, many more faint stars can be seen.  This is often the result 
of “light pollution” in which light from terrestrial sources (such as a nearby city) is bounced around 
by atmospheric molecules and results in a bright background against which we are trying to 
see/measure faint astronomical sources.   This is one of the reasons that modern observatories are 
located far from densely populated areas.    
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You have seen that the 28 mm diaphragm you used with the photometer is significantly larger than 
the apparent diameters of the stars being observed, thus your measurements of the brightnesses of 
pi1 Boötes and Arcturus were actually measurements of “star + sky.”  In practice, astronomers try 
to use the smallest possible diaphragm size, but it is impossible to totally exclude light from the 
sky in photometric measurements. 
 

Question 4:  Given that the diaphragm size will always be bigger than the stellar image 
and that there are no places where the sky is totally dark, your measurements will 
always be contaminated.  Suggest a way in which the sky brightness could have been 
measured and removed from your observations of pi1 Boötes and Arcturus.   
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Table 1:  Counts for 0.01 sec Integration Time 

Measurement UTC Photon Count Count Rate 
(photons/sec) 

1    
2    
3    
4    
5    
6    
7    
8    
9    
10    

Average    
Standard Deviation    

 

 

Table 2:  Counts for 1.0 sec Integration Time 

Measurement UTC Photon Count Count Rate 
(photons/sec) 

1    
2    
3    
4    
5    
6    
7    
8    
9    
10    

Average     
Standard Deviation    
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Table 3:  Counts for 10.0 sec Integration Time 

Measurement UTC Photon Count Count Rate 
(photons/sec) 

1    
2    
3    
4    
5    
6    
7    
8    
9    
10    

Average     
Standard Deviation    

 

 

Table 4: Scintillation Summary Table 

Integration Time 
(sec) 

Average Count Rate 
(counts/sec) Standard Deviation Visual 

Magnitude 
0.01    

1.0    

10.0    
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Table 5: Results for Extinction Exploration 

Local Time Altitude 
(°) Photon Count Airmass Visual 

Magnitude 
0:00 AM     

0:30 AM     

1:00 AM     

1:30 AM     

2:00 AM     

2:30 AM     

3:00 AM     

3:30 AM     

4:00 AM     

4:30 AM     
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Lab H 
Taking a Star's Temperature 

(Adapted from The Hands-On Universe, Volume I) 
  

 
 
PURPOSE: 
 
Verify that the surface temperature of a star can be estimated by measuring its brightness through 
a set of differently colored filters. 
 
EQUIPMENT: 
 
TS-24 computer program and calculator or Excel spreadsheet 
 
 
 
 

 
 

Figure 1: The Energy Distributions of Hot Objects 
Picture credit: www.exo.net  
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Magnitudes, Colors & Temperature 
 
In an earlier lab you learned that the pattern of absorption lines seen in the spectra of stars depends 
strongly on the temperature of their outer surface layers.  Because of our understanding of the 
formation of spectral lines, we are able to analyze stellar spectra and determine a star’s surface 
temperature.  This knowledge is what led to the ordering of spectral types in the OBAFGKM 
classification system.  The acquisition of a high quality stellar spectrum and the detailed analysis 
of its properties can be a time consuming and resource-intensive process – particularly if we wish 
to determine the properties of many stars.  Fortunately, there are other techniques available which 
allow astronomers to estimate stellar temperatures using more easily obtained and analyzed data.  
In this lab, you will examine one such technique, which utilizes stellar photometry, i.e., the 
measurement of the brightness of stars in specific wavelength intervals. 
 
As you have seen in your lecture course, a hot dense object emits light at all wavelengths.   In the 
late 1800's, the German physicist Max Planck discovered that the amount of energy radiated at a 
given wavelength λ by such an object depends only upon its temperature.  He formulated a 
mathematical relationship which describes the brightness (or intensity) at a given wavelength as a 
function of temperature.  This relationship is now known as Planck’s Law.  Several examples of 
Planck’s Law in action are shown in Figure 1 on the first page of the Lab, for temperatures in the 
range 3000 – 7000 K.  For the purposes of this lab, the key point is that the peak in the emitted 
radiation shifts to shorter and shorter wavelengths as the temperature increases.  This property, 
known as Wein’s Law, results in a change in the shape of the emitted spectrum within the 
wavelength range to which the human eye is sensitive (indicated by the rainbow).  For temperatures 
above 7000 K, the peak shifts out of the range of human vision, although a portion of the “tail” of 
the energy distribution is always visible to the eye. 
 
So what does this have to do with stars?  Stellar absorption lines are superimposed on a continuum 
spectrum which forms in slightly deeper, hotter and denser layers than the absorption lines.  These 
layers should obey Planck’s and Wein’s Laws and thus the shape of the continuum spectrum should 
reflect the stellar temperature near the surface.   
 
The shape of a star’s continuum spectrum can be measured using stellar “photometry.”  Earlier 
this semester you became photometry experts when you investigated the effects of Earth’s 
atmosphere on the apparent brightness of stars.   Now you will put this expertise to work and 
measure the apparent brightness of a sample of stars using a specially designed set of filters to 
isolate specific regions of the visible spectrum.  The filters are known as the UBV filters, with the 
letters standing for Ultraviolet, Blue, and Visual.  The wavelength ranges which these filters isolate 
are shown schematically below in Figure 2.  The figure also shows schematic spectra of two stars 
of very different temperatures.  It can be seen clearly that the ratio of the brightness of a star in any 
pair of filters, say, B and V or U and B will be dependent on temperature, at least over some 
temperature range.   
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Lab Procedure 
 

The observations for this lab will be performed using the photoelectric photometer mounted on the 
15" telescope at the VU Special Observatory.  Why is this observatory special?  Because it is 
located on the Moon!  Why is it located on the Moon?  Because – as you know from an earlier lab 
– Earth’s atmosphere provides severe observational challenges.  If we made these observations 
from the Earth’s surface, we would have to worry about (and correct for) the effects of extinction, 
scintillation, and sky brightness in order to correctly measure the apparent brightness of the stars.   
This would add a significant amount of extra work and you would never be able to complete this 
lab in a reasonable time.  The inconveniences of working from the Moon’s surface (slight shortness 
of breath and intense feelings of cold) seem a small price to pay for this benefit. 

 
You will measure the brightness of each of a set of 13 target stars using the U, B and V filters.  
These raw measurements, in units of photon counts per second, will then be converted into the 
standard astronomical magnitude system and you will examine the sensitivity of the “B-V color 
index” and the “U-B color index” to stellar temperature.  The stars you will observe have been 
chosen to span a wide range of temperatures and to be located in a small region of the sky, so that 
all the observations can be accomplished in a single observing session. 
 

A.  THE OBSERVATIONS 
 
Step 1:  Go to the observatory 
 
Open the TS-24 telescope simulator.  Select the VU Special Observatory (OBS, VU Special).  In 
the Time box, select Local Date/Time and set the date to November 15, 1999 at midnight LST.  
We’ve chosen this date and time so that all the stars we wish to observe will be above the horizon 
and high in the sky for Earth-bound observers located at Villanova. 
 

Figure 2 
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Step 2:  Prepare the telescope 
 
Install the Finder scope (TEL, Finder) and click the 1 arc-degree button in the SLEWING RATES 
panel, to insure that the telescope moves at its highest possible speed to each new target star. 
 
Step 3:  Observe your first star 
 
Now perform UBV photometry on the first of your 13 target stars.  The list of targets can be found 
using the DT-7 telescope control program (DT-7).  Click on the ALLSTARS group and a list of 
15 stars will appear.  You’ve already observed the first two stars on the list (pi1 Bootes and 
Arcturus) when you studied the effects of the atmosphere on stellar photometry.  Today’s 
observations begin with the third star on the list, upsilon Ori, and end with the last star, alpha Ori.   
To move the telescope to the first star, simply click on the name upsilon Ori and then click the 
Move To button. 
 
When the telescope arrives at upsilon Ori, install the photometer (TEL, Photomultiplier).  Set 
the photometer parameters as follows: 
 
     Integ Time:  1 sec 
     Diaphragm: 28 arc-seconds 
   
Center the star in the 28 arc-second diaphragm, making sure – if necessary – to exclude any nearby 
stars.  Then measure the brightness of upsilon Ori using the U, B and V filters by clicking on the 
appropriate filter and then pressing Count.  Record the U, B and V count-rates in Table 1 or in an 
Excel spreadsheet supplied by your instructor.  Note that, since the integration time is set to 1 
second, the total number of photons counted by the photometer (last entry in each line of the 
Photometer Log) is the same as the count-rate in units of counts/second. 
 
Step 4:  Observe the rest of the sample 
 
Repeat Step 3 for each of the remaining 12 stars in the DT-7 target list and record the count-rates 
in Table 1. 
 

Question 1:  The use of the VU Special Observatory just saved you a lot of time in 
acquiring good measurements of the brightness of your target stars.  What is special 
about the VU Special Observatory?  What benefits does it offer?  What extra steps 
would you have had to take if you had been observing from a typical site on the Earth’s 
surface? 

 
B.  THE DATA ANALYSIS 
 
Take a look at Table 2.  The second and third columns contain basic data for your 13 target stars.  
The spectral types were determined by astronomers studying the optical spectra of the stars, much 
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as you did in an earlier lab.  The temperatures, which refer to the outer layers of the various stars, 
were determined by analyzing the strengths of the various absorption lines present in the spectra.  
In this section we will determine whether the overall shapes of the optical spectra are also 
dependent on temperature, as might be expected from Wein’s Law.   
 
Step 1:   Compute magnitudes and colors 
 
Compute the V magnitude, B-V color index, and U-B color index for each star in Table 1 and place 
the results in the appropriate boxes in Table 2 (or in your Excel spreadsheet).  Use the following 
formulae to convert your count-rates to magnitudes and color indices: 
 
 𝑉𝑉 =  −2.5 × log (V count- rate) + 18.0 (1) 

 
 𝐵𝐵 − 𝑉𝑉 =  −2.5 × log �

B count- rate
V count- rate

� + 0.17 (2) 

 
 𝑈𝑈 − 𝐵𝐵 =  −2.5 × log �

U count- rate
B count- rate

� − 0.93 (3) 

 
The constants on the right hand side of these formulae are needed to transform your count-rate 
measurements into the standard system of colors and magnitudes used by astronomers.  In your 
table, present your results to only 3 decimal places (although the count-rates are determined to a 
higher precision). 
 
These three values – V, B-V and U-B – coarsely characterize the brightness and shape of a star’s 
optical spectrum.  The V magnitude depends on both the intrinsic luminosity of a star (i.e., how 
much energy it puts out) and its distance from us.  From a good dark site, the unaided human eye 
can see stars as faint as about sixth magnitude (i.e., V ~ 6.0).  Notice that nearly all of your target 
stars should be easily visible in the night sky (remembering that, the fainter the star, the larger the 
V magnitude).  
 

Question 2:  How many of your target stars would not be easily visible to the unaided 
human eye?  Which ones? 

 
Step 2:  Investigate the temperature-dependence of the color indices. 
 
Now we’ll determine whether the shape of the optical spectrum is sensitive to stellar temperature.  
To do this, we will use the B-V and U-B color indices, which are essentially measurements of the 
slope of the spectrum in the wavelength range where the eye is most sensitive.   Make a plot of the 
stellar temperature (x-axis, from column 3 of Table 2) versus your measurement of B-V (y-axis).  
Make a second plot of the temperature versus your measurement of U-B. 
 

Question 3:  Do your data show that the B-V color index and/or the U-B color index 
is sensitive to the stellar temperature?  I.e., do you see a distinct relationship between 
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the two quantities?  Does this relationship make sense given Wein’s Law?  (Refer back 
to Figure 2 to remind yourself how Wein’s Law affects UBV photometry.) Note that,  
when B-V  > 0.17, a star is brighter in the V filter than in the B filter, and vice versa 
for B-V < 0.17.  When U-B > -0.93, a star is brighter in B than U, and vice versa for 
U-B < -0.93 (Hint: take another look at the slopes of the spectra in Figures 1 and 2 
and the count rates you recorded in Table 1.) 

 
Question 4:  For which stars is B-V most sensitive to temperature?  The hotter ones or 
the cooler ones?  (I.e., for which stars does a small change in temperature – say a few 
thousand degrees – make the largest change in the observed B-V?).  Your observations 
do not include any O stars, which have temperatures that could range up to as high as 
50,000 K.  Given the data on your plot, what do you think the approximate B-V color 
index of an O star might be?  Do you think that B-V would be a good diagnostic of the 
temperature of an O star?  What about U-B? 

 
Question 5: Why do you think B-V and U-B are referred to as “colors” by 
astronomers?  What do they have to do with the color of a star in the nighttime sky?  
Neglecting atmospheric effects, do you think the color you see tells you anything about 
a star? 

 
Step 3:  Compute and test the “color temperatures” 
 
There is a standard relationship that has been used for many years by astronomers to compute the 
“color temperature” of a star, based on its B-V color index.  This relationship is given by: 
 
 color temperature =  

7200 
(𝐵𝐵 − 𝑉𝑉) + 0.64

  𝐾𝐾  (4) 

 
You will now test this relationship by comparing the color temperature for each of your stars with 
the spectroscopically-determined temperatures. 
 
Compute the color temperatures for all of your stars according to Equation 4 and enter them in the 
last column of Table 2.   Now make a plot of the actual stellar temperature (x-axis, from column 3 
of Table 2) versus the color temperatures you just computed (y-axis). 

 
Question 6:  Does the “color temperature” from Equation 4 accurately reflect the 
actual stellar temperature as determined from the spectral lines?  If so, then the points 
you just plotted should all lie along a line with a slope of 1 and an intercept at 0.  To 
check this, draw such a line on your plot.  (If you used Excel to make your plot, you 
could draw this line by adding a new dataset to your plot – consisting of points at X = 
[0, 20000] and Y =  [0, 20000] – using the Select Data feature, and then fitting a linear 
Trendline to these points.)  Over what stellar temperature range would you feel safe in 
using the color temperature to estimate the actual stellar temperature?   What spectral 
type range does this correspond to? 
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Table 2: Magnitudes, Colors, & Temperatures 

Star Spectral 
Type 

Temperature 
(K) V B-V U-B 

Color 
Temperature 

(K) 
upsilon Ori B0 V 31,500         
lambda Lep B0.5 IV 26,200         
HD 31726 B1 V 22,600         

eta Aur B3 V 16,300         
tau Ori B5 III 13,200         
beta Ori B8 I 12,200         
mu Ori A2 V 9,100         
iota Tau A7 V 8,300         

gamma Lep F6 V 6,300         
lambda Aur G2 IV 5,860         

tau Aur G8 III 4,900         
rho Ori K0 III 4,500         

alpha Ori M2 I 3,600         
 

Table 1: Observational Data 

Star U count-rate 
(cts/sec) 

B count-rate 
(cts/sec) 

V count-rate  
(cts/sec) 

upsilon Ori    

lambda Lep    

HD 31726    

eta Aur    

tau Ori    

beta Ori    

mu Ori    

iota Tau    

gamma Lep    

lambda Aur    

tau Aur    

rho Ori    

alpha Ori    
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Lab I 

Trigonometric Parallax 
 

 
 
PURPOSE: 
 
To use simulated observations of the heliocentric parallax of stars to understand the most 
fundamental method of measuring distances outside the solar system. 
 
EQUIPMENT: 
 
Surveyor’s theodolites, computer, scientific calculator, and Villanova's Super 'Nova computer 
program 
 
 
 
 

The Cosmic Distance Ladder 
Picture credit:  Bennett et al. “The Essential Cosmic Perspective” 
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Introduction 
 
 
One of the most important measurements that astronomers make is that of the distances to 
astronomical objects. For example, distances are required for determining many of the 
fundamental properties of stars and galaxies, such as their luminosities, as well as for determining 
the size scale of the Universe.  For objects on Earth and in the Solar System, it is now possible to 
use the technique of “radar ranging” to accurately determine distances.  In this technique, a beam 
of radio waves is bounced off a distant object.  The time delay between when the beam is sent out 
and when the reflected beam returns, combined with our knowledge of the speed of light, allows 
the distance of the object to be computed.  The precision of this technique is limited only by our 
ability to measure the time delays.  Beyond the Solar System, however, radar ranging is impossible 
and astronomers have devised a number of methods that allow distances to ever more distant 
objects to be estimated.  Some of these methods are illustrated in the figure on Page 1 of the lab.  
The set of techniques that now allow us to determine distances out to the faintest observable 
galaxies is known collectively as “The Cosmic Distance Ladder.”  In general, the techniques for 
studying the most distant objects depend on calibrations determined by studying more nearby 
objects.  In fact, the accuracy of the entire Cosmic Distance Ladder ultimately depends on how 
well we can measure the distance to the nearest stars.   
 
In this lab you will investigate the technique of “Trigonometric Parallax” which astronomers use 
to measure the distances to the nearest stars.  You will see that this is a “fundamental” technique 
in that it relies on no theoretical assumptions nor on any a priori understanding of the properties 
of stars.  You will also see how this technique is similar to a method used by Earth-bound surveyors 
to measure distance to faraway objects. 
 
THE SURVEYORS METHOD: 
 
Even on Earth, distance measurements are not always simple.  Particularly in the days before radar 
ranging was possible, techniques had to be devised to measure distances to remote or inaccessible 
objects and locations.  One such technique, the “Surveyor’s Method,” is illustrated below in Figure 
1.  The goal is to measure the distance to the tree on the far side of a raging river without getting 
wet or, possibly, drowning.  The technique is straightforward.  The first step is to establish a 
baseline on the accessible side of the river, of known length b.  The second step is to measure the 
two angles β1 and β2 using a precise surveyor’s instrument called a theodolite.  Finally, after 
applying a little trigonometry (i.e., the Law of Sines), the distance to the tree can be calculated 
from either of the equations: 
 

 𝑑𝑑1 =  
sin𝛽𝛽2
sin𝛼𝛼

 × 𝑏𝑏 (1a) 

or 

 𝑑𝑑2 =  
sin𝛽𝛽1
sin𝛼𝛼

 × 𝑏𝑏 (1b) 

 
where α is the apex angle of the triangle in Figure 1, and gives the angular size of the baseline as 
viewed from the distant tree. Since the sum of the interior angles of a triangle is 180°, we have: 
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 𝛼𝛼 = 180° −  𝛽𝛽1 −  𝛽𝛽2 (2) 

The physical units of the distance in Equation 1will be the same as those in which the baseline is 
measured.  The precision of this distance measurement will depend only on the precision of the 
measurements of b, β1 and β2. 

Before we discuss the astronomical applications, let’s first consider what happens to Equation (1) 
when the distance is very large (as compared to the baseline length).  From studying Figure 1, you 
can see that, as the distance increases, the angles β1 and β2 approach limiting values of 90° and the 
apex angle α approaches a limiting value of zero.  From our knowledge of trigonometry, we know 
that this also imposes limiting values on the sine of these angles.  These limits can be summarized 
as follows: 
 

as 𝑑𝑑 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
�⎯⎯⎯⎯⎯� large: 

𝛽𝛽1  → 90° 
𝑎𝑎𝑎𝑎𝑎𝑎 

sin𝛽𝛽1 → 1 
𝛽𝛽1  → 90° sin𝛽𝛽1 → 1 
𝛼𝛼 → 0° sin𝛼𝛼 → 𝛼𝛼 

 
If we substitute these limiting values for the sine of the angles into either of Equations (1a) or (1b), 
we get a simplified version of the distance equation which applies for large values of d: 
 

 𝑑𝑑 =  
1
𝛼𝛼

 × 𝑏𝑏 for large d (3) 

where the angle α is expressed in radians and the distance will have the same units as the baseline. 
Thus, for large distances, the distance is inversely proportional to the size of the apex angle α and 
directly proportional the size of the baseline b.  The inverse relationship between the angle α and 
the distance d can be seen clearly from considering Figure 2. 
 
Later in this lab, you will become surveyors and measure the distance to an object outside the 
classroom using two theodolites.  Because the objects you measure are still relatively close, you 
will use the more exact version of the distance equation, as given in Equations (1). 

Figure 1 
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THE ASTRONOMER’S METHOD: 
 
Astronomers have devised a technique for measuring the distances to nearby stars, which is similar 
to that employed by Earthly surveyors.  It is known as the Trigonometric Parallax method.  Figure 
3 shows the general arrangement, which makes these measurements possible.  The Earth’s orbit 
around the Sun provides a measurement baseline whose length is well-known, i.e., 2 Astronomical 
Units (AU).  This baseline subtends an angle α as observed from the nearby star whose distance 
we wish to determine.  Measurements of α and b allow us to determine the distance to the star 
using Equation (3) and with a precision limited only by the precision of our measurements. 
 
At this point you should be thinking, “How in the world can the angle α be measured when we 
can’t travel to the star and directly measure it?”   
 
This is where the “parallax” part of Trigonometric Parallax comes in.  “Parallax” is the apparent 
shift in position of a nearby object with respect to more distant objects when viewed from two 
different positions.  As an example, hold up your thumb at arm’s length and look at it first with 
one eye, and then the other.  Your thumb appears to shift back and forth against the background, 
and this apparent shift is called parallax.  It is the result of looking at an object from two different 
vantage points, that is, from each eye that has a different position relative to your thumb.  If you  
  

 Figure 2 

Figure 3 
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move your thumb closer to your face and repeat the experiment you see that the apparent shift of 
your thumb is greater.  Therefore, the more distant an object is the smaller is its shift, or parallax, 
when viewed from two different positions. 
 
For nearby objects, closer than 100 feet or so, your brain measures the parallax by comparing the 
direction of an object as seen by your two eyes and automatically interprets that parallax as a 
distance.  For this reason most people find it nearly impossible to touch the tips of their index 
fingers to each other with one eye closed, but find it easy with both eyes open. 
 
As the Earth moves on its orbit around the Sun, our vantage point for viewing the stars constantly 
changes.  Thus the relative positions of the stars on the sky actually change during the course of a 
year, just the way the apparent position of your thumb against a background pattern would change 
if you moved your head back and forth.  Because of the great distances of the stars, however, this 
change is only measurable for the nearest stars and is far smaller than could be sensed with the 
naked eye.  High quality photographs of the stars, taken at different times of the year are required 
to reveal this motion. 
 
The picture below shows how a star’s parallax is observed: 
 

Look closely at the two simulated photographs of the stars.  You will see that the position of the 
nearby star has changed relative to the pattern created by the very distant background stars.  If you 
could observe the star continuously over the course of a year, say from one January to the next, 
you would observe the star move slowly from one extreme position to the other, and then back 
again to the original location.  Here is the critical part:  the full distance that the star moves on the 
sky between the January and July observations – which we measure in angular units by comparing 
the January and July photographs – is the same as the apex angle α in Equation (3) and as shown 

Figure 4 



I-6 
 

in Figure 3. We don’t have to travel to the star to measure α!  Since we already know that the 
baseline is equal to 2 AU, this measurement allows us to use Equation 3 to determine the distance 
to the nearby star.  The beauty of this technique is that we don’t have to know anything about stars 
to measure their distances.  There are no theoretical assumptions in the technique and the precision 
is limited only by our ability to observe the yearly change in a star’s position on the sky, i.e., its 
parallax.  
 
In practice, astronomers use an even more simplified version of Equation (3) to determine a star’s 
distance.  By convention, astronomical parallax angles, represented by the symbol p, are always 
taken as half the full apex angle (as indicated in Figure 4), and are measured in units of arc-seconds 
rather than radians.  Remember that: 
 

1 full circle = 360 degrees (°) = 2π radians 
1 degree = 60 arc-minutes (') 

1 arc-minute = 60 arc-seconds (") 
 
With these two conventions, and remembering that the baseline distance is 2 AU, Equation (3) 
reduces to: 
 
 

𝑑𝑑 (𝐴𝐴𝐴𝐴) =  
206265
𝑝𝑝 (″)

 (4) 

 
where the parallax angle p is measured in units of arc-seconds and the distance d is returned in 
units of AU.  The factor of 206,265 arises because that is the number of arc-seconds in 1 radian. 
 
To further simplify things, astronomers have defined a distance equal to 206,265 AU (equivalent 
to 3.26 light-years) to be one parsec (pc).  With this definition, Equation (4) becomes: 
 
 

𝑑𝑑(𝑝𝑝𝑝𝑝) =  
1

𝑝𝑝 (″)
 (5) 

 
Equation (5) is often known as the Parallax Equation.  As you might have guessed, the word parsec 
is a concatenation of the words parallax and arc-seconds.  A star with a parallax angle of 1" will 
have a distance of 1 pc.  Another way to look at it is that, from a distance of 1 pc, a baseline of 1 
AU will subtend an angle of 1". 
 
 
INTRODUCTORY QUESTIONS: 
 

Question 1: Suppose the surveyors in Figure 1 make the following measurements:  
b = 50 feet, β1 = 87°, β2 = 89°.  How far away is the tree?  Show all calculations. 
 
Question 2:  What is the critical condition that would allow us to use the simplified 
form of the distance equation in Eq. (3) rather than the full form in Eq. (1)? 
 
Question 3: What is the distance, in parsecs, of a star with a parallax shift of p = 
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0.75 arc-second?  Show all calculations. 
 

Question 4: What is the distance, in A.U., of a star with a parallax of p = 0.75 arc-
second?  Show all calculations. 

 
Question 5: What is the distance, in light years, of a star with a parallax of p = 
0.75 arc-seconds?  Show all calculations. 

 
 

Lab Procedure 
 
There are two parts to this lab.  In Part A you will use the Surveyor’s Method and a pair of 
theodolites to determine the distance to an object outside the classroom.  Your instructor will tell 
you which object to measure.  In Part B, you will use simulated observations of the night sky to 
measure the parallax angle p and distance t d to several nearby stars.  These two parts can be done 
in any order.  You should probably begin with Part B and your instructor will call up pairs of 
students to complete the measurements for Part A. 
 
 
A. THE DISTANCES TO TERRESTRIAL OBJECTS: THE SURVEYOR’s METHOD 
 
There are two surveyor’s theodolites set up in the lab next to the window – one at the front of the 
lab and one at the back of the lab.  You will use these to perform a measurement identical to that 
illustrated in Figure 1 (except that there is no river).  The measurements you will need to make are 
the baseline size b (i.e. the distance between the theodolites) and the two angles β1 and β2 between 
the baseline and the distant object.  You will work in pairs or groups, with one student (or group) 
at the front theodolite and another at the rear theodolite.  You instructor will tell you which distant 
object to observe.  
 
Step 1: Establish the baseline. 
 
Loosen the vertical and horizontal motion locks to allow the theodolite telescopes to move freely. 
The locks are indicated by the yellow electrical tape.  Turn them counter-clockwise to loosen the 
telescopes and clockwise to lock the telescopes.  Point the telescopes so that they are looking 
directly at each other.  Tighten the locks.  After the telescopes are locked, small adjustments of the 
pointing can be made using the fine-adjustment knobs indicated by the blue electrical tape.   
 
After you are satisfied that the two telescopes are pointed directly at each other, press the green 
power button on the theodolite’s control panel to activate the display.  Next press the “0SET” 
button on the control panel.  This will establish the baseline as the zero angle position of the 
telescope.    
 
Step 2:  Measure the horizontal deflection angle of the distant object.  
 
Once you have zero’d the system, loosen the motion locks (yellow tape) and move the telescope 
so that it is centered on the object whose distance you wish to measure.  Center the object in the 
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telescope’s crosshairs and lock the telescope.  Remember that you can make fine adjustments in 
the telescope’s pointing after it has been locked.   Make sure that you and your partner are pointed 
to the same part of the object you are measuring.  After you are satisfied that telescope is pointed 
properly, record the horizontal deflection angle (β1 for the front theodolite and β2 for the rear 
theodolite) in Table 1 below or on an Excel spreadsheet provided by your instructor.   The angle 
is shown on the instrument’s display panel in the HR row, in units of degrees, arc-minutes, and 
arc-seconds.  If the display reads a negative angle, press the R/L button to toggle the telescope’s 
rotational orientation between clockwise and counter-clockwise.  Your final result should be in the 
general neighborhood of 90°.  Share your result with your observing partner.  You should both 
now have measurements for β1 and β2 
 
Step 3:  Measure the baseline distance.   
 
Determine the separation between the two theodolites.  Use the tape measure provided by your 
instructor to determine the distance between the two plumb bobs hanging below the theodolites.  
Make this measurement as precisely as possible, to a fraction of an inch. Record the baseline 
distance b in Table 1.   
 
Your measurements are now completed. Turn off the theodolites’ control panels by pressing the 
green power button again. 
 
Step 4:  Compute the distance to the object. 
 
Use your measurements of β1, β2 and b – along with Equation (1a) and (1b) – to determine the 
distance to your chosen object.  If you are using Excel for your calculations, remember that it 
requires angles to be expressed in radians to compute trig functions.  Enter your distance result (in 
feet) in Table 1. 
 

Question 6: How well did you do?  You instructor will provide you with the known 
distance to the object you’ve observed.  Compute the percentage error for your results.  
Remember that %-error is given by: 

 
 

% 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 × 100% (6) 

 
Comment on your results.  Were they closes to the true value?   What were the main 
sources of possible uncertainty in your measurements? 

 
 
B. THE DISTANCES TO STARS: TRIGONOMETRIC PARALLAX 
 
Step 1:  Gathering data 
 
Launch the Super 'Nova program in the “Astronomy” folder by clicking on its icon.  Choose Labs, 
then Stellar Parallax to start the exercise.  The computer can simulate a five different fields and 
you will select three to use in this lab.  For each field, the computer simulates a photograph of a 
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very small portion of the sky.  You can use the 'Blink' feature to switch back and forth between 
three photographs of the same portion of sky taken six months apart and arbitrarily identified as 
January, July, and January one year later.  As you Blink between the photographs, the distant stars 
will not change but the nearby stars will appear to move back and forth just as your thumb appeared 
to move back and forth as you blinked your eyes at the very beginning of the lab. 
 
'Blinking' only two plates taken six months apart may show objects that are really moving in 
addition to stars that appear to move due to parallax.  Objects that are truly in motion are planets, 
comets, etc.  Only additional observations can tell you whether the object is really moving.  Pluto 
was discovered in precisely this way by blinking pairs of plates.  Today, new asteroids are 
discovered with this technique but they move so rapidly that their motion is apparent on plates 
taken only a few days apart.  Beware!  In this lab, there are a couple of objects that are really in 
motion.  If an object does not move back to its original position one year later when you blink the 
photographs, it is not a star and the apparent motion is due to actual movement. 
 
To record the data, first write down the number of the field that you have chosen in the Data Table 
below or on the Excel spreadsheet provided by your instructor.  Then blink among the three 
photographs to identify the stars with measurable parallaxes.  Now turn on the overlay Bullseye 
(click on Bullseye), place the Bullseye overtop one of the stars that exhibits parallax by clicking 
on it.  Make sure the Bullseye is well centered and measure the position of this star for the earlier 
January date.  Record its initial position (x and y; displayed lower right) in the Table.  Click on 
Blink and determine how far this stars' position appears to shift in July.  Each ring of the Bullseye 
counts as one "Grid Unit".  Estimate the shift, S, to the nearest 0.1 grid unit and enter it in the 
Table.  Do the same for any other star that shows a parallax shift.  Note - If you find a moving 
object (planet, etc.) you will need to measure its coordinates for the first January, but leave the 
shift blank since the movement is actual and not caused by parallax. 
 
After completing your first field, choose two other fields (Starfield, etc.) and repeat the above 
procedure for each. 
 
Step2:  Processing the data 
 
Now that you have identified the stars in your fields with measurable parallaxes and have measured 
both their positions and parallax shifts, the next step is to calculate their distances.  This is done in 
two parts.  First, the shift in grid units must be converted to the parallax angle.  Next, this parallax 
must be converted to a true distance to the star. 
 
The shift, S, is actually twice the parallax in grid units.  This must be reduced to a real angle, which 
can be done by knowing the plate scale on the screen.  The scale of the screen is 10 grid units = 1 
arc-second.  Since the parallax is half of the measured angle, you must also divide by a factor of 
2: 
 

𝑝𝑝 (″) =  
𝑆𝑆

10
×

1
2

=
𝑆𝑆

20
 (6) 

 
Using this information, convert the total shift in grid units to the parallax angle in arc-seconds.  
Record this in your Data Table.  Using the information provided in the Introduction (and equation 
5), determine the distances (in parsecs) to the stars with measurable parallaxes.  Finally, convert 
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these distances in parsecs to that of light years using the conversion 1 parsec = 3.26 light years 
 

Question 7: As you have seen, parallax angles are small.  But how small?  Imagine 
someone holding up a dime (diameter = 1.8 cm) at a distance from you such that the 
dime appeared to have an angular size of 1″.   How far away from you would that 
person be?  Show all calculations.   (Hint: Use Equation 3.  In this case, the angular 
size of the dime is α and the dime’s physical diameter is the baseline b.) 
 
Question 8: The diameter of the Sun is 1,392,000 km (i.e., 1.392 x 1011 cm).  If you 
were to construct a scale model of our Galaxy, such that the Sun was shrunk to the size 
of a marble with a diameter of 1 cm, how far away from the Sun would you have to 
place a model of the Earth?  (Note, the Earth-Sun distance is 1 Astronomical Unit).  
How far away from the Sun would you have to place a model of the nearest star you 
measured in your Data Table above?   Show all calculations. 
  
Question 9:    The fastest spacecraft ever launched by humans is the New Horizons 
mission, which has recently flown by the dwarf planet Pluto and the Kuiper Belt Object 
Ultima-Thule.  It achieved a velocity of approximately 16 km/sec shortly after launch.   
If a human-launched spacecraft could sustain such a speed, how long (in years) would 
it take to reach the nearest star whose distance you measured above in your Data 
Table?   How might such a journey be accomplished?  Would you like to make this 
trip?  Show all calculations.  

 
When finished with the computer program, Exit the exercise (File, Exit Parallax Lab), and then 
exit the program (File, Exit).  Finally, as usual, shut down the computer completely when finished. 
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b (feet)

distance d1 (feet)

distance d2 (feet)

β2 (˚     '     '')

β1 (decimal degrees)

β2 (decimal degrees)

α (decimal degrees)

Table 1: The Surveyor's Method

The object you observed:

β1 (˚     '     '')

(Jan 1) (Jan 1) (grid units) (arc-sec) (parsecs) (light yrs)

A

B

C

A

B

C

A

B

C

StarField #
Distance

Table 2: Stellar Parallax Measurements

x Position Parallax DistanceY Position S
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Some Useful Units and Conversions 

 
1 Astronomical Unit (AU) = 1.496 x 108 km  (Earth-Sun distance) 
1 light year    =  63,271 AU 
1 light year    =  9.461 x 1012 km 
1 parsec     =  3.26 light years 
1 year     =  31,557,600 seconds 
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Lab J 

The Distance to a Star Cluster 
(Adapted from Contemporary Laboratory Experiences in Astronomy 

 
 

 
 
PURPOSE: 
 
To learn how astronomers can determine the distance to star clusters using a technique called Main 
Sequence Fitting. You will perform simulated photometry to measure the apparent B and V 
magnitudes of 25 stars in the Pleiades cluster and use these data to determine the distance to the 
cluster. 
 
EQUIPMENT: 
 
Computer, CLEA Computer Program Photoelectric Photometry, scientific calculator or Excel 
spreadsheet. 
 

The Pleiades star cluster. 
 

Photo credit: NASA 
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Absolute Magnitudes and Distance 
 
In an earlier lab, you learned about the technique of Trigonometric Parallax, which allows 
astronomers to measure the distance to relatively nearby stars in a completely assumption-free 
way.  This is important because accurate distances are needed to determine many intrinsic stellar 
properties.  For example, if we know the distance d and measure the apparent brightness b of a 
star, then we can compute its intrinsic luminosity L from the inverse-square law formula relating 
these three quantities: 

 𝑏𝑏 =  
𝐿𝐿

4𝜋𝜋𝑑𝑑2 (1) 

 
The luminosity, which is the total energy emitted per second by the star, is related to the rate at 
which nuclear energy is released deep in the interior of the star.  Thus the distance, while not an 
intrinsic stellar property itself, plays an important role in uncovering the intrinsic properties.   
Equation 1 could also be used to find the distance to a star, if its luminosity were known a priori, 
since the brightness b is always measurable.   This method of distance determination is the subject 
of this lab.  
 
An alternative way astronomers have of quantifying the luminosity of stars is the absolute visual 
magnitude MV.  It is defined as the apparent visual magnitude V a star would have if it were located 
at a distance of 10 pc.  As with V, which you measured in earlier labs, the more positive the value 
of MV, the fainter the star.  Because of the way MV is defined, the difference between a star’s actual 
observed value of V and its intrinsic value of MV is related to the star’s distance.  This difference 
is often called the distance modulus DM of a star and is defined as: 
 

 
The star’s distance is related to its distance modulus by: 
 

  
where the resultant distance is in units of parsecs.  Although they look very different, equations 1 
and 3 are both expressions of the inverse square law of light.   

 
Question 1:  Use Equation 3 to calculate the distance to a star with a distance modulus 
of zero.  Show all steps of your work.  Is your answer consistent with the definition of 
MV? Explain. 

 
An important early result from the study of stars with known distances is that, for Main Sequence 
stars, MV and spectral type are well correlated.  This relationship is shown in Figure 1 below.  The 
least luminous stars in the diagram are the cool M8 stars on the lower right, and the most luminous 

 DM ≡ (V – MV) (2) 

 𝑑𝑑 = 10^[(𝐷𝐷𝐷𝐷+5) 5]⁄  𝑝𝑝𝑝𝑝 (3) 
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are the hot O5 stars on the upper left, with a systematic change in luminosity in between.  You 
should recognize Figure 1 as a form of the HR Diagram, i.e., a plot of a star’s luminosity vs. its 
temperature – but using spectral type and MV as proxies for temperature and luminosity, 
respectively.   
 
Because a star’s spectral type and B-V color are related – we can replace spectral type with B-V 
and re-plot Figure 1 as a Color-Magnitude Diagram.  This is shown in Figure 2.  The beauty of 
Figure 2 is that, if we know that a star belongs to the Main Sequence, then we need only measure 
its V magnitude and B-V color to determine its distance.  The procedure would be to (1) use the 
measured B-V color and Figure 2 to determine the star’s intrinsic MV, and (2) compute the distance 
using Equations 2 and 3 and the observed value of V.  In this case, only photometric measurements 
are required, which can be made for large numbers of stars in a relatively short time.   

Figure 2 

Figure 1 
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The Importance of Star Clusters 
 
The shortcoming with this photometric approach is that the B-V color of a star is not sufficient to 
tell us whether or not the star belongs to the Main Sequence, and some other information would 
be needed to determine this – such as a carefully determined spectral type.  That’s where star 
clusters come in.   A cluster is a physically-related group of stars which all formed together and 
all lie at the same distance from us, thus the distance modulus DM is the same for all the stars.  If 
the V magnitudes and B-V colors of cluster stars are plotted against each other, the Main Sequence 
stars will form a pattern similar to that seen in Figure 2 and thus be readily identifiable.  Other 
types of stars, such as the intrinsically more luminous giants and supergiants will lie above the 
main sequence line and also be clearly distinguished.  Once the cluster’s Main Sequence stars have 
been identified, the calibrated relation in Figure 2 can be used to determine the stars’ MV values 
and distance moduli.  The distance to the cluster can then be computed as the average of the 
individual stellar distances, which should all yield consistent results.  This general technique is 
known as the Main Sequence Fitting technique.   
 
Main Sequence Fitting can be applied to star clusters at far greater distances than feasible for 
Trigonometric Parallax.   Knowing the distances to star clusters in our Milky Way galaxy, and 
thus their 3-dimentional spatial distribution, is important for understanding the structure of the 
Milky Way.   An added value of determining a cluster’s distance from its Main Sequence stars is 
that, once the distance is known, the luminosities of all its other stars can be computed.  In this 
way we can discover the intrinsic properties of other, less well-understood, types of stars. 
  
 

Lab Procedure 
 
In this lab you will perform the Main Sequence Fitting technique on a relatively nearby group of 
stars called the Pleiades star cluster.  This cluster – shown on the first page of the lab – is located 
in the constellation Taurus and is readily visible to the naked eye.  You will first perform simulated 
photometry of the cluster’s stars, and then determine the mean distance modulus.   
 
You will use a realistic simulation of a photoelectric photometer attached to a moderate-sized 
research telescope to collect data on 25 stars in the region of the Pleiades star cluster.  The 
simulation allows you to select different filters, in order to isolate the wavelength regions of 
interest, and to select your desired integration time.  For this lab, you will measure the V and B 
magnitudes, and determine the B-V color for each of your program stars.  To save you time, the 
simulation will automatically compensate for the effects of atmospheric extinction.  You, however, 
will have to measure the brightness of the sky, so that its effects can be removed from your data.  
 
 
A.   MAKING THE MEASUREMENTS 
 
Step 1:  Launch the simulation 
 
In the Astronomy folder, launch the Photoelectric Photometry program.  Click File, Log In… to 
open the Student Accounting screen.  Enter your name, without using any punctuation marks, then 
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click OK to continue. 
 
Step 2:  Open the observatory 
 
Click File, Run to activate the observatory, and then take a moment to study the various controls 
available to you.  You now have command of a 16” research-grade astronomical telescope 
equipped with at photoelectric photometer.  Click on Dome to slide the observatory dome doors 
open, which will reveal the night sky in the direction of the Pleiades star cluster, as seen through 
the finder telescope.  The region shown is the same as illustrated in the photo on page 1 of the lab.  
Compare the two to verify this.   
 
Step 3:  Move to a star 
 
Once the dome is opened, a small red square in the center of the view appears.  This is the field of 
view seen by the photometer when activated.  The star you wish to observe must be carefully 
positioned within this field in order to be measured. 
 
You should observe that the stars visible through the finder telescope seem to be drifting towards 
the right, which is the westward direction.  This is because the Earth is rotating and, in general, 
causes astronomical objects like the Sun to “rise” in the East and “set” in the west.  Telescopes are 
equipped with a motor drive which moves the telescope in the same direction as the drift and at 
the same rate.  The motor (often called the clock drive) cancels the effect of the Earth's rotation 
and the stars seems to stand still, permitting extended study.  Turn on Tracking and note how the 
stars cease to drift. 
 
Note that the directional controls move the telescope, not the sky!  Moving the telescope to the 
west appears to make the stars move in the opposite direction. Try it by clicking and holding the 
N, S, E, or W buttons.  The Slew Rate control adjusts in steps, and changes how much the 
telescope is moved each time the directional controls are used.  Try it, too. 
 
Now move the telescope so that one or more stars appears inside the field of view of the 
photometer. 
 
Step 4: Take sky readings 
 
Click on Change View to enter Instrument mode and activate the photometer.  The computer 
screen will look as below.  The aperture, through which light passes to the photometer, is shown 
as the small circle in the center of the field.  Since the aperture is much larger than the star under 
study, and the sky is not perfectly dark, the sky within the aperture contributes a certain number 
of photons to the measurements of the stars.  These unwanted photons are counted by taking a 
“sky” reading, with no star in the aperture.  The star to be measured is then centered in the aperture 
and a “star+sky” reading is taken.  Then the true photon count for the star by itself is approximated 
by the “star+sky” reading minus the “sky” reading.  It is important that both the sky and the star 
reading be taken through the same color filter and with the same aperture size.   
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Move the telescope until the aperture (circle) is free of any star, then click on Take Reading.  A 
new window will open (“CLEA Photometer Window”), containing the photometer controls.  
Clicking the Filter button cycles through the U, B, and V filters.  Make sure the integration time 
is set to 10.0 seconds (by clicking the Seconds button) and that the number of integrations to be 
performed is set to 3 (by clicking the Integrations button).  Now, whenever the Start Count 
button is clicked, the photometer will count photons for a total of 30 seconds, in three groups of 
10 seconds each.   
 
Select the V filter and press Start Count.  When the measurement is finished, record the result 
(Mean Sky Counts/Sec) in Table 1 (or in an Excel spreadsheet if provided by your instructor).   
Now switch to the B filter and repeat.   When you are finished, press the Return button to close 
the CLEA Photometer Window.  The observatory computer recognized that these were blank sky 
measurements by the absence of a star in the aperture.  Every stellar measurement made from now 
on will have this sky brightness removed before the final magnitude is returned.  In a real observing 
session, an astronomer would likely measure the sky brightness in a small patch of blank sky 
adjacent to each target star, to account for spatial and temporal variability.  To save time, however, 
we will assume that the sky brightness is spatially uniform and unchanging throughout the night.  
Thus, this single set of sky measurement will be applied to all the stellar measurements. 
 
Step 5:  Measure the stellar B and V magnitudes 
 
Move the telescope to center a star in the aperture. The right ascension and declination of the 
aperture center are displayed in the lower left of the screen.  Click Take Reading and select a filter 
(B or V) and an integration time in the Photometer Window.  Use short integration times for bright 
stars, and long integrations for faint stars.  
 
Now click Start Count.  The computer will take a series of three integrations, and display the 
individual and average photon counts in the Photometer Window.  After the integrations are 

Figure 3 
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completed, the apparent magnitude of the object under study in the chosen filter is displayed in 
the Magnitude box (lower right corner).  This value has been corrected for the effect of sky 
brightness.  Also displayed is the signal-to-noise ratio (S/N Ratio) of the reading.  A high S/N 
means you have a lot of desired photons, and only a little noise.  You should strive for S/N figures 
of least 100.  You can increase the S/N by increasing the integration time or increasing the number 
of integrations.  Integrations that are too long (particularly on a bright star) may cause the counting 
electronics to overflow.  Should this happen, repeat the reading with a shorter integration time. 
 
For each of 25 stars in the Pleiades star cluster, record the Right Ascension, Declination, B 
magnitude, and V magnitude in Table 2 (or in an Excel spreadsheet).   Record all magnitudes to 
the nearest 0.01 magnitude.   Be sure to include both bright and faint stars in your sample to cover 
the Main Sequence over the widest possible range.  You must have at least one star with V  >  
12. 
 
 
B.  PREPARING THE DATA 
 
Step 1:  Compute the B-V color index 
 
Compute the B-V color for each star by subtracting its V magnitude value from its B magnitude.  
Record the result in Table 2 (or in your spreadsheet).  Remember from an earlier lab that hot blue 
stars have low, and even negative,  B-V values while cooler red stars have B-V values of +1 or 
greater. 
 
Step 2:  Make a Pleiades color-magnitude diagram 
 
Using the graph provided at the back of the lab (or your Excel spreadsheet), make a color-
magnitude diagram of your Pleiades data, using the V magnitude on the y-axis and the B-V color 
on the x-axis.  If you are using Excel, your plot should be modeled on the blank graph in the back 
of the lab.  Be sure that the y-axis is oriented so that the brighter stars are at the top of the 
diagram. 
 

Question 2:  Do you recognize the presence of the Main Sequence in your diagram?  
Describe it.  Do all of your stars seem to be Main sequence stars?  Identify the Main 
Sequence on your plot.  (If you are using Excel, you may have to wait until you print 
out the plot at the end of lab and then use pencil to do the labeling.) 

 
Step 3:  Make a calibrated Main Sequence color-magnitude diagram 
 
Now plot, in the same fashion as above (by hand on the graph provided or with Excel), a calibrated 
color-magnitude diagram using the data in Table 3, which is taken from Allen’s Astrophysical 
Quantities 4th Edition (2000).  This version of the diagram, which you have already seen in Figure 
2, uses the luminosity of the stars (in the form of MV) rather than the apparent brightness (in the 
form of V) on the y-axis.  Your graph should resemble Figure 2. 
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C.  DETERMINING THE PLEIADES DISTANCE 
 
Step 1: Measure the distance modulus DM 
 
If your instructor provided you with an Excel spreadsheet for recording your data, follow his/her 
directions for determining the distance modulus.  Record your value for DM in Table 4.  Now 
jump down to Step 2. 
 
If you used the graphs provided with the lab and plotted your data by hand follow these 
instructions: 
 

Overlay and slide the two graphs up and down until the main sequence on the Absolute 
Magnitude plot best aligns with the main sequence on your Apparent Magnitude (Pleiades 
Cluster) graph.  Keep the y-axes precisely parallel.  Seek a best fit for the central portion 
of the combined patterns.  The cool red stars in the lower right of your cluster graph are 
quite scattered and may not fit very well. 
 
Consider what you are doing:  You have graphs of two groups of main sequence stars.  One 
graph is in terms of visual Apparent Magnitude (V) and the other one in visual Absolute 
Magnitude (MV).  When the patterns are matched, it is clear that each star on the combined 
main sequence can be described either in terms of V or MV.  It just depends on which scale 
you read. 
 
So, once the two main sequence patterns are aligned, a fixed relationship is established 
between the Apparent and Absolute Magnitude scales, no matter where you read the y-axis 
or which star you pick.  So, pick any convenient magnitude on the Absolute Magnitude 
scale and read its corresponding Apparent Magnitude on the paper scale.  Read each scale 
to the nearest 0.1 magnitude. 
 
Sketch the main sequence curve from the Absolute Magnitude plot onto your Pleiades 
graph. 

 
Now that you’ve determined the distance modulus DM, answer the following question: 
 

Question 3:  What distance modulus (DM) do you find?  List the values of the Absolute 
Magnitude and the corresponding Apparent Magnitude which lead to this 
determination.  

 
Step 2:  Compute the distance 
 
Use Equation 3 to compute the distance to the Pleiades in parsecs.  Then convert to light-years 
(where 1 pc = 3.26 ly).  Record these values in Table 4. 
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D. SUMMARY QUESTIONS 
 

Question 4:  How well did you do?  Recently (in 2014), astronomers at the National 
Radio Astronomy Observatory determined a precise distance to the Pleiades cluster of 
443 light years, with an estimated uncertainty of only about 1%. Want was your 
percentage error?  What do you think are the major sources of uncertainties in your 
result?    

 
Compute the % Error of your measurement using the following formula: 
 
 

% Error =  �
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� × 100 (4) 

 
Enter this result in Table 4. 

 
 
 

Question 5:  Look over your Pleiades color-magnitude diagram and the stars you 
identified as main sequence stars.  Does your sample contain any red giant stars?  How 
would you recognize them?  How are they different from main sequence stars of the 
same temperature?  If you do have red giants, list them in Table 5 and label them on 
your plot. 
 
Question 6:  How would your distance estimate for the Pleiades have changed if you 
had based your distance modulus measurement only on a single red giant star that you 
mistakenly thought was a main sequence star? Explain your answer.  

 
Question 7:  Consider a star in the direction of the Pleiades with V = 18.0 and B-V = 
0.1.  It would seem curiously out of place with respect to the main sequence.  Have you 
talked in class about any type of star that might lie in this place on the color-magnitude 
diagram?  (Yes, you probably have.)  How would such a star be different from main 
sequence stars of the same temperature?   
 
 

*** EXTRA CREDIT QUESTION*** 
Note: because this is extra credit, you may not ask your instructor for help! 

 
Question 8:  If you lived out in the Pleiades and looked in the direction of Earth, how 
bright would the Sun be in the nighttime sky? I.e., what would its V magnitude be? 
Would the Sun be visible to the naked eye?  (Our eyes can see stars as faint as V~ 6.) 
Explain your reasoning.  Note: The Sun is a G2 V star with B-V = 0.62.  Its brightness 
as seen from the Pleiades would be the same as an identical Pleiades star as seen from 
Earth.    
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Table 1: Sky Brightness 

Filter Mean Sky  
(counts/sec) 

B  
V  

 
 

Table 2: Pleiades Photometry Data Sheet 

 RA Dec B V B-V 
1      
2      
3      
4      
5      
6      
7      
8      
9      
10      
11      
12      
13      
14      
15      
16      
17      
18      
19      
20      
21      
22      
23      
24      
25      
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Table 3: Main Sequence Color-Magnitude-Spectral Type       

Calibration 

Spectral Type Absolute Magnitude B-V 
O5 -5.70 -0.33 
B0 -4.00 -0.30 
B5 -1.20 -0.17 
A0 +0.65 -0.02 
A5 1.95 +0.15 
F0 2.70 0.30 
F5 3.50 0.44 
G0 4.40 0.58 
G5 5.10 0.68 
K0 5.90 0.81 
K5 7.35 1.15 
M0 8.80 1.40 
M5 12.3 1.64 
M8 16.0 1.80 

 
 
 
 

Table 4: The Distance to the Pleiades 

DM d d % error (pc) (light years) 

    

 
 
 
 

Table 5: Possible Red Giant Stars 

 RA Dec 
1   
2   
3   
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Lab K 
Measuring the Mass of the Andromeda Galaxy 

(Adapted from Astro Labs, University of Maryland) 
 

 
 
PURPOSE: 
 
To measure the mass of the Andromeda Galaxy using the orbital motions of the stars and gas 
clouds in its disk.  The distribution of mass within the visible galaxy will be examined and 
evidence found for significant amounts of “unseen matter.” 
 
EQUIPMENT: 
 
AstroLabs computer program, Excel spreadsheet, ruler, and calculator. 
 

 
The Andromeda Galaxy 

Photo credit: Robert Gendler 2002 
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Galactic Rotation & Mass 
 
One of the most fundamental properties of a galaxy is its mass, which plays a critical role in galaxy 
formation and evolution. The masses of astronomical objects are, in general, difficult to measure 
because we are not able to put the objects on a scale or a spring balance. Astronomers have had to 
be clever and figure out what kinds of observations – necessarily made from distances of millions, 
billions or trillions of miles – can shed light on an object’s mass. This is where gravity comes in.  
The force of gravity between any pair of objects is known to depend on both the masses of the 
objects and the separation between them. And so, if we can observe the gravitational interaction 
between objects in space, we can work backwards and determine the masses of the objects. This 
is the primary technique used for determining the masses of individual stars, namely, through 
measurements of the orbits of binary stars (which are stars gravitationally bound to each other and 
orbiting a common center).   
 
Gravity can also be used to measure the masses of entire galaxies.  The most visible parts of spiral 
galaxies are large, flattened, rotating disks consisting of stars and interstellar clouds of gas and 
dust particles.  These move within the disk in nearly circular orbits around the centers of their 
galaxies, and their orbital properties are controlled by the collective mass of the galaxy itself.  
Thus, by measuring the orbital properties of the components of a galaxy – specifically, the orbital 
radii and speeds – the mass of the galaxy can be determined.     
 
The key to deriving a spiral galaxy’s mass is Kepler’s Third Law, which was discovered by the 
German mathematician/astronomer Johannes Kepler in the early 1600’s from observations of Solar 
System objects. Kepler’s Third Law can be stated as: 
 

 𝑀𝑀<𝑎𝑎 = 𝐾𝐾 
𝑎𝑎3

𝑃𝑃2
 (1) 

 
where, in our application, a is the radius of a star’s or gas cloud’s orbit around its galactic center, 
P is the orbital period, M<a is the mass of the galaxy within a distance a from the center, and K is 
a constant whose value depends on the units chosen for M, a, and P.  Measurements of a and P 
allow the enclosed mass to be determined.  If these measurements are made at a range of orbital 
radii, then we can build up a picture of how the mass within a galaxy is distributed, as well as an 
estimate of the galaxy’s total mass. 
 
This is the procedure you will carry out in today’s lab, in which you will make measurements of a 
nearby spiral galaxy called Andromeda. Andromeda, shown on the first page of the lab, is usually 
considered to be a twin to our own Milky Way galaxy and shows us what our galaxy would look 
like if viewed from a distance of about 2.5 million light years. You will investigate the rotation 
properties of Andromeda by measuring the orbital radii and speeds of its stars and interstellar 
clouds at a variety of radii and then determine the total mass and mass distribution of Andromeda.  
This will lead to a startling discovery about the nature of the matter making up galaxies in our 
Universe.  
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Lab Procedure 
 
Measuring the orbital speed of stars or interstellar clouds in other galaxies is difficult because we 
do not have the luxury of simply watching a galaxy rotate and determining the orbital speeds from 
the time needed to complete a rotation.  This would generally take hundreds-of-millions of years, 
which is beyond the attention span of most people. Indeed, because of the great sizes and distances 
of galaxies (and their relatively slow rotation speeds), it is never possible to directly observe any 
transverse motion – i.e., motion across the line-of-sight – in a galaxy’s components. The best we 
can do is to measure the radial motion – i.e., motion along the line-of-sight – of objects in a galaxy 
using the Doppler Effect, which you learned about in your lecture class. By carefully choosing the 
locations of the observations, and knowing something about the orientation of a galaxy, these 
radial motions can be corrected to yield the true orbital speed of a star or interstellar cloud. From 
this, the mass of a galaxy and its mass distribution can be inferred. 
 
A.  TILTED ROTATING DISKS 
 
Step 1:  Launch the Simulation 
 
Launch the AstroLabs program in the Astronomy folder, and on the opening screen choose 
Galactic to start the lab.  The first part of the program demonstrates the motion of a rigid circular 
disc, like a Frisbee or a DVD.  The main part of the display is a representation of the disc with 
arrows indicating the direction of motion.  To the right is a "side view" showing the observer's 
eye looking at the rotating disc.  As you move the cursor around on the disc with the mouse, the 
displays show the distance from the center of the disc, the true rotational velocity at that point, and 
the line-of-sight velocity that would be measured via the Doppler Effect. 
  
Step 2:  Investigate the effects of inclination 
 
In this first display, the disc is being viewed face-on, corresponding to an inclination angle of i = 
90°.  In this case, all of the rotational motion is in the transverse direction (i.e., in the plane of the 
sky) and none of it is in the radial direction.  Verify this by moving the cursor around in the disk.  
You should see that the “Velocity in line of sight” (i.e., the radial component which would be 
measured by the Doppler shift) is always 0. 
 
Now cycle through a set of different inclination angles by clicking ChangeInclination.  Notice 
that the apparent shape of the disk becomes flatter as the inclination approaches zero, although the 
largest diameter, called the major axis, is always the apparent diameter of the true circular form. 
If the true shape of the disk were known to be circular, then it would be possible to determine the 
inclination from the apparent flatness of the projected disk.  You will do this below in Step 3 to 
measure the inclination of the Andromeda galaxy. 
 
Now let’s see how the inclination angle affects the line-of-sight velocities.  Remember, these are 
the velocities you would actually measure using the Doppler shift.  Select one of the inclinations 
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angles between 0° and 90° (i.e., either, 18°, 22.5°, 30°, or 45°).  Put the cursor at the position X 
= –450, Y = 0 and record the values of the “Rotational Velocity” and “Velocity in line of sight” in 
the appropriate places in Table 1.  Now do the same for the rest of the X, Y positions listed in 
Table 1.  Notice that these positions sample the rotation across the major axis of the disk, on both 
sides of the center. 
 
Now look at Figure 1 below.  It is a “side view” of the rotating disk (or galaxy), like that seen in 
the upper right of the simulation.  Figure 1 shows that, when the line-of-sight velocities vlos are 
measured along the major axis, there is a simple trigonometric relationship between vlos (which we 
can measure) and the actual rotational speed vrot (which we want to know).  This relationship is: 
 
 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙) =  𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟  ×  cos 𝑖𝑖 (2) 

 
Solving for vrot yields:  
 
 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙) ÷  cos 𝑖𝑖 (3) 

 
You will recall that vlos can be either negative or positive, depending on whether the object being 
observed is approaching or receding, respectively.  Equation 2 recovers only the magnitude of 
vlos, not the direction – hence the use of the absolute value function.  Let’s test Eq. 3 using the 
data you just collected.  For each of the vlos measurements you entered in Table 1, compute the 
quantity 𝑨𝑨𝑨𝑨𝑨𝑨(𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍) ÷  𝐜𝐜𝐜𝐜𝐜𝐜 𝒊𝒊  and enter in the appropriate column.  If our understanding is 
correct, then this modified value of vlos should be identical to the actual value of vrot you measured.  
If you are using Excel, remember that angles have to be converted from degrees to radians before 
performing trigonometric calculations. 
 

Question 1:  Do your values for 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙) ÷  𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖  agree with the true rotation 
speeds vrot for all positions along the major axis?  Do you agree that, if you can 
measure the line-of-sight velocities of objects along the major axis in a tilted spiral 
galaxy, then you can determine their true orbital velocities (provided you know the 
inclination angle i)?   
 

Step 3:  Measure the inclination of the Andromeda galaxy 
 
Since the distributions of stars and interstellar clouds within spiral galaxies are known to resemble 
thin circular disks, the flattened shape of the Andromeda galaxy shows that it is not being viewed 
in a face-on orientation ( i.e., i ≠ 90°).  To determine the inclination angle i, we simply need to 
make the assumption that the true face on shape is circular and then measure the relative sizes of 
the major axis and the minor axis.  The minor axis is the smallest diameter of the oval-shaped 
image and is perpendicular to the major axis, passing thru the apparent center of the galaxy.  (In 
the simulation, it is the line connecting points A and B.) 
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Using the photograph of Andromeda supplied on the last page of the lab and a ruler, measure the 
long diameter and the short diameter of the Andromeda image.  You will have to be consistent in 
your estimate of the locations of these diameters and the extent of the galaxy in both directions.  
Enter the results in first two lines of Table 2. 
 
Now refer back to Figure 1.  A little trigonometric insight should show you that the relationship 
between the major and minor axis lengths is given by: 
 
 minor axis = major axis ×  sin 𝑖𝑖 (4) 

 
This relationship can be rearranged to express the inclination in terms of the major and minor axis 
lengths: 
 

 𝑖𝑖 = sin−1 �
minor axis
major axis

�  (5) 

 
Compute Andromeda’s inclination angle i from your measurements and enter it in both radians 
and degrees in the third and fourth rows of Table 2.  If you are using Excel, remember that the 
inverse sine function is given by “ASIN”.  Also note that Excel will return the angle i in radians.  
To convert to degrees, use the “DEGREES” function. 
 
 
B.  THE ROTATION CURVE OF ANDROMEDA 
 
Click NextPart on the lab menu bar to proceed to the measurement of Andromeda’s rotation 
properties.  
 
 

Figure 1 
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Step 1:  Set the major axis 
 
The computer screen shows a picture of the Andromeda Galaxy.  Above the image there is a line 
with two small filled circles at both ends and another to indicate the center.  Your first job is to 
move this line into a position so that it represents the major axis of Andromeda.  You can control 
the tilt of the line and the location of its center by clicking and dragging the filled circles.  Now, 
position the line so that it runs down the long axis of the galaxy with the center circle at the center 
of the galaxy. 
 
Step 2:  Measure the Doppler shifts 
 
If we were actually doing this experiment, we would take spectra at various points along the major 
axis line, measure the Doppler shift and determine the radial velocity.  We would then measure 
on the photograph the distance from the center to the various points at which the spectra were 
taken.  These measurements would usually be made in some convenient units (e.g., mm) and then 
converted into real distances (e.g., in parsec) by using the known distance to Andromeda.  This is 
obviously a time consuming task and, to save time, all these calculations will be done for you by 
the simulation program.  Notice that there is a small "bead" that moves along the line as you move 
the cursor around.  This bead marks the point where you are "taking a spectrum" and measuring 
the radial velocity via the Doppler shift.  The readouts at the bottom of the screen give the line of 
sight (radial) velocity of the point at which the bead is located and its actual distance from the 
center of the galaxy (“a”) in units of kiloparsecs (kpc), where 1 kpc = 1000 pc. 
 
Starting at the north-east (upper left) corner of Andromeda, position the cursor at each of the a 
values listed in the first column of Table 3 and record the line-of-sight velocity, vlos in column 2 
of the table.  Work down thru the center of Andromeda and end up in the south-west corner, 27 
kpc from the center. 
 
Step 3:  Determine the systemic motion 
 
If you recall the demonstration of the rotating disks (Part A of the lab), you should realize that 
there is something wrong. For the rotating disk, the center point did not move and had a zero 
velocity. However, the radial velocity at the center of this galaxy is far from zero.  This is because 
there are other motions involved besides simple rotation. Andromeda and our galaxy may be 
getting closer together or further away from one another. Our Sun is presumably revolving around 
the center of our Galaxy. The Earth is revolving around the Sun and rotating on its axis. All of 
these motions can add to or subtract from the radial velocity due just to the actual rotation of 
Andromeda. The motions of the Sun and Earth are reasonably well known and are corrected for in 
the values you have just measured. However, the overall motion of Andromeda with respect to us 
is still in the data and has to be determined. The simplest way to do this is to assume that the center 
of Andromeda is not rotating and that all the motion we see there is systemic, i.e., is due to the 
overall motion of Andromeda. 
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Record the velocity at the center and enter it in Table 4. Alternatively, you can also estimate the 
systemic velocity by averaging all the velocities you measured, as long as the points are 
symmetrically placed on either side of the “true” center of the galaxy. Determine the average 
velocity and enter it in Table 4.  Indicate in the table whether the systemic velocity implies that 
Andromeda is approaching or receding. (Is the value negative of positive?) 
 

Question 2:  Which velocity do you think gives a better estimate of the systemic 
velocity of Andromeda?  The center velocity or the average velocity?   Explain. 

 
Step 4:  Correct for systemic motion   
 
To correct the line of sight velocities for the systemic motion of Andromeda, you must simply 
subtract the systemic velocity from the vlos values you previously recorded in Table 4.  I.e., 
 

 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (6) 
 
Do this, using the value you think best represents the systemic velocity, and record the results in 
Table 3 in the column labeled 𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄.  Be careful when subtracting negative numbers! 
 
Step 5:  Correct for the inclination of Andromeda 
 
Finally, you have to correct for the fact that the galaxy is tilted and, thus, the measured radial 
velocities are not the true rotation speeds.  In Part A, you measured the inclination of Andromeda 
and saw how inclination affects the observed line-of-sight velocities.  Now you will apply Eq. 3 
to your measure values of 𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 to derive the true rotation speeds of objects it the Andromeda 
galaxy.  Perform this correction on your data, and enter the results in the last column of Table 3. 
 
Step 6:  Draw the rotation curve 
 
From your data in Table 3, make a plot of the true rotational speed vrot vs. the distance a from the 
galactic center.  Use the graph provided at the end of the lab or, alternatively, use Excel to make 
the plot.  Draw a smooth curve that best fits all of the points.  This is called the “Rotation 
Curve” of the Andromeda galaxy and describes how the orbital speeds of objects in Andromeda 
vary with distance from the center of the galaxy.  Your rotation curve should be reasonably 
symmetric.  That is, the velocities on one side of the galactic center should be about the same as 
the velocities of on the other side of the center.  If you see a large systematic difference between 
the two, then you may have made an error in determining the systemic velocity.  Check this! 
 
If you are using Excel, be sure to match the axes and labels to those of the graph provided with 
the lab.  Plot the data points without connecting lines or curves.  Then use the Trendline to fit a 
smooth curve through the data points.  Try a polynomial and vary the order until the curve looks 
something like what you would draw by hand.   
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C.  THE MASS OF ANDROMEDA 
 
You are now ready to transform your rotation measurements into a map of the distribution of mass 
within Andromeda.  In the Introduction to the lab, you saw that Kepler’s Third Law gives the 
crucial connection between the orbital properties and mass – you will now apply that equation. 
 
Step 1:  Prepare the data 
 
The first two columns of Table 5 already contain the orbital sizes at which you measured the 
rotation speed, in the original units of kpc and converted to Astronomical Units (AU).  From the 
smooth curve you drew through the data on your Rotation Curve graph (or fit using Trendline), 
carefully read the values of vrot at these positions and enter them in the third column of Table 5.  
(Alternatively, you can average your measurements for corresponding distances on either side of 
Andromeda’s center.) 
 
Now you’ll determine the orbital period P corresponding to each orbital radius.  The orbital period 
is simply the distance traveled in one orbit divided by the orbital speed.  The distance traveled is 
the circumference of the orbit, given by 𝟐𝟐𝟐𝟐𝟐𝟐.  Combining these facts, and taking care to consider 
the units with which the measurements are made, yields: 
 

 𝑃𝑃 =  29.7 
𝑎𝑎 
𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (7) 

 
where the resultant period will be in units of years if the orbital size a is measured in AU and the 
orbital speed vrot in km/sec.  Using Eq. 7, compute the value of P for each of the positions in Table 
5 and enter them in the fourth column of the table. 
 
Step 2:  Compute the “enclosed masses” 
 
Finally, compute the mass enclosed within each orbit.  With the proper choice of units, the 
constant K in Kepler’s Third Law (see Eq. 1) will be 1.  Choosing those units yields: 
 
 

𝑀𝑀 =  
𝑎𝑎3

𝑃𝑃2
 𝑀𝑀ʘ (8) 

 
where the resultant mass will be in units of the Sun’s mass if the orbital size a is measured in AU 
and the period P in years.  
 
Use Eq. 8 to calculate the mass of Andromeda interior to each orbit and enter this mass in the last 
column of Table 5.  Make a plot of the enclosed mass as a function of distance from Andromeda’s 
center, using the enclosed graph.  If you use Excel, match your axes and labels to those of the 
graph provided with the lab 
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D.  WHAT IT MEANS 
 
Examine the masses that you have calculated.  As you go further out from the center, you include 
more of the galaxy and the enclosed mass naturally increases.  Eventually you would expect to 
get to the "edge" of the galaxy, where you have included all the mass.  At this point, the enclosed 
masses should “flatten out” to a constant value (the total mass of the galaxy), since increasing the 
distance from the center no longer includes any new material. 
 

Question 3:  From your observations, have you reached the “edge” of Andromeda 
yet.  Explain.  If so, how far from the center is the edge? 

 
You should see that something strange is going on!   
 

Question 4:  Careful study of Andromeda has shown that more than 90% of its stars 
lie in the disk within a distance of ~20 kpc from the galactic center.  Thus, the disk can 
be said to have a radius of approximately 20 kpc and we would expect the mass 
distribution to be flattening out by this point.  From your plot, what is the mass within 
a radius the size of the stellar disk (i.e., 20 kpc)?  What is the mass within the maximum 
radius you measured?  Do you observe that the mass distribution has flattened out at 
the edge of the stellar disk? 

 
What you have seen is that the enclosed mass of Andromeda keeps on increasing, far beyond the 
edge of the stellar disk.  This tells you that there is a significant amount of material beyond the 
stellar disk, even though the galaxy looks dark out there.  Thus, Andromeda is much bigger and 
more massive than its obvious stellar disk.  The nature of this material, which is called “Dark 
Matter” because it does not emit or absorb light, is unknown and is one of the biggest mysteries 
in modern astronomy! Evidence for Dark Matter has been found in almost all galaxies, including 
the Milky Way, and is the dominant mass component of galaxies.  
    

Question 5:  Based only on the observations you have made, do you know the size of 
Andromeda or its total mass?  Explain. 

 
Question 6:  It has been said that looking at a galaxy in visible light is like looking at 
the “tip of an iceberg.”  Explain this statement in light of what you have learned 
above. 
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X Y
Line of Sight Velocity 

(vlos)
Rotational Velocity 

(vrot)
ABS(vlos)÷cos(i)

-450 0
-350 0
-250 0
-150 0
-50 0
50 0

150 0
250 0
350 0
450 0

Table 1: Inclination and Line of Sight Velocity

Inclination (i) =

Table 2: Inclination of the Andromeda Galaxy

   Major axis  (cm)
  Minor axis (cm)

Inclination i  (°)
Inclination i  (radians)
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vlos vlos
corr vrot

(km/s) (km/s) (km/s)
27.0 NE
24.0 NE
21.0 NE
18.0 NE
15.0 NE
12.0 NE
9.00 NE
6.00 NE
3.00 NE
0.00
3.00 SW
6.00 SW
9.00 SW
12.0 SW
15.0 SW
18.0 SW
21.0 SW
24.0 SW
27.0 SW

Table 3: Andromeda Rotation Data

a
(kpc)

Velocity at Center (km/s)
Average Velocity (km/s)
Approaching or Receding?

Table 4: Systemic Motion of Andromeda
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a a vrot P M
(kpc) (AU) (km/s) (yr) (M☼)

3 6.19E+08
6 1.24E+09
9 1.86E+09

12 2.48E+09
15 3.09E+09
18 3.71E+09
21 4.33E+09
24 4.95E+09
27 5.57E+09

Table 5: Kepler's Third Law Results
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The Andromeda galaxy 

Include this picture, 
marked with your 

estimates of the major 
and minor axes, with 

your lab report 
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Lab L 

The Expansion of the Universe 
(Adapted from Contemporary Laboratory Experiences in Astronomy) 

 
 

 
 
PURPOSE: 
  
To observe how the apparent recessional velocities of distant galaxies lead to the concept of an 
expanding Universe, from which the age of the Universe can be estimated.  
 
EQUIPMENT: 
 
Ruler, calculator, Microsoft Excel, and the CLEA program Hubble Redshift. 
 
 
 

The Expanding Universe 
Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb 
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The Expansion of the Universe 

 
Early in the1900’s, the astronomer V.M. Slipher obtained spectra to study the properties of a 
number of faint astronomical objects he referred to as “spiral nebulae.”  He noticed that the 
spectral lines in many of these nebulae were shifted towards redder wavelengths, as compared with 
reference lines created in the laboratory.  If these “redshifts” are interpreted as a result of the 
Doppler Effect, then they imply a systematic radial (or line of sight) motion of these galaxies.  
I.e., Slipher’s data implied that most spiral nebulae were moving away from us.   
 
By 1929, Edwin Hubble had established that these spiral nebulae were actually vast galaxies 
similar to our own Milky Way galaxy.  In addition, using techniques he developed for determining 
the distances to these galaxies, he established that the redshifts of the galaxies were proportional 
to their distance from the Milky Way.  I.e., the more distant the galaxy, the faster it seemed to be 
moving away from us.  Figure 1, seen below, is taken from Hubble’s 1929 paper and shows a plot 
of the “recession velocity” versus distance.  This type of plot has come to be known as the Hubble 
Diagram.  The solid and dashed lines represent Hubble’s first estimates of the linear relationship 
between velocity and distance, now referred to as the Hubble Law.  This relationship is 
represented quantitatively as: 
 
 𝑣𝑣 = 𝐻𝐻0 ×  𝑑𝑑 (1) 

 
where v is a galaxy’s radial velocity, as inferred from its redshift, and d is its distance.  The 
parameter H0 is known as the Hubble Constant and represents the slope of the observed relation 
between v and d in the Hubble Diagram.  It is obtained through observations of numerous 
galaxies over a range of distances. 
 
If galaxies were randomly distributed throughout the universe and moving in random directions, 

Figure 1 
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there would be, on average, just as many of them approaching the Milky Way as receding from it.  
Yet, Hubble's work convincingly showed that nearly all are actually moving away from our galaxy.  
What could account for this surprising find? 
 
Hubble and others concluded that the Universe itself is expanding in all directions.  Galaxies 
generally appear to be moving further away from one another in much the same way that the galaxy 
pictures painted on the leftmost balloon in the picture on page 1 of the lab seem to move apart as 
the balloon is inflated.  Once we accept this expansion theory, “running the clock backwards” 
indicates that, at some time in the very distant past, the components of the universe were very 
much closer together.  If we continue to run time backwards in this manner until everything 
“touches,” then reading our clock will give us an estimate of the age of the universe.  Today we 
identify this event as the Big Bang – the origin of the Universe and the beginning of time.  The 
elapsed time since the Big Bang depends on the expansion rate of the Universe, which is 
characterized by the Hubble Constant.  As a result, a precise determination of H0 has been a high 
priority in astronomy since the 1930’s. 
 
 

Lab Procedure 
 
The software you will use in this lab simulates the operation of a computer-controlled spectrometer 
attached to a telescope at a large mountain-top observatory.  Using this equipment, you will 
determine the distances and recession velocities of several galaxies located in selected clusters 
around the sky.  From these data you will plot a graph of velocity versus distance (as in Figure 1) 
and determine the value of H0.  Using this value, you will then compute an estimate of the age of 
the Universe. 
 
 
A.  COLLECTING THE DATA 
 
So how does the equipment work?  The TV camera attached to your simulated telescope lets you 
see the galaxies, and you can steer the telescope so that light from a galaxy is focused into the slit 
of the spectrometer.  You can then turn on the spectrometer and begin to collect photons from the 
galaxy.  When sufficient photons are collected, you should be able to see distinct spectral lines 
from the galaxy (particularly, the “H” and “K” lines of the element calcium) and you will measure 
their wavelengths using the computer cursor.  The wavelengths will be longer than the 
wavelengths of H and K lines measured in laboratories, because the galaxies are moving away 
from us and the lines are all redshifted.  The spectrometer also measures the apparent magnitude 
V of the galaxy from the rate at which it receives photons from the galaxy.  So, for each galaxy, 
you will have recorded the wavelengths of the H and K lines and the V magnitude. 
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Step 1:  Welcome to the Observatory! 
 
Open the Hubble Redshift program by double clicking on the CLEA-Hubble Redshift icon 
(pink).  Click File, Login ... on the Menu Bar and enter your name.  Click OK when finished.  
Then click File, Run to begin the nights observing.  
 
Step 2:  Prepare the equipment 
 
The screen shows the control panel and viewing window as found in the "warm room" at the 
observatory.  Notice the Dome status is "Closed" and Tracking status is "OFF".  To begin our 
evening’s work, first open the dome by clicking on the Dome button.  When the dome opens you 
will see a view of the night sky through the finder telescope, showing both stars and galaxies.  The 
finder scope is mounted on the side of the main telescope and points in the same direction.  It is 
used to locate the objects we want to measure, because the field of view is much larger than the 
view in the main instrument.  It is displayed on-screen by a CCD camera attached on the finder 
scope.  You can switch between the finder scope view and main telescope view by toggling the 
Change View button. 
 
If you look carefully, you will notice that the stars and galaxies seen through the finder scope are 
drifting slowly towards the west (right) side of the viewing screen.  As you learned in an earlier 
lab, this is because the Earth is rotating in space.  To be able to point the telescope at any particular 
object for the time needed to record the desired data, we must counteract this effect.  Click 
Tracking to turn on the telescope’s clock drive, which constantly corrects for the Earth’s motion.  
The tracking status should switch from “OFF” to “ON” and the objects on screen should stop 
drifting. 
 
Step 3:  Select your first target 
 
To find the objects for tonight's observing session, click once on the Field… item in the Menu Bar 
at the top of the control panel.  (Note: This option is only available if you are looking through the 
finder scope.)  A small box will open, listing the names of six galaxy clusters that contain the 
objects we have selected for study tonight, along with the astronomical coordinates of their centers.  
These clusters span a wide range of distances and your goal will be to observe one galaxy from 
each of five different clusters.     
 
Click on the cluster name Ursa Major I, then click the OK button.  The telescope will now “slew” 
(i.e., move rapidly) to the RA and Dec coordinates of the cluster.  When the telescope arrives at 
the coordinates, the view window will show a portion of the sky that was electronically captured 
by the CCD camera attached to the finder scope.  The screen should look like Figure 2 at the top 
of the next page.  Both stars and galaxies are visible in the view window.  It is easy to recognize 
bright galaxies in this lab simulation, since the shapes of the brighter galaxies are clearly different 
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from the dot-like images of stars.  But faint galaxies can look like stars, since we can't see their 
shape. Be careful! Make sure you observe galaxies and not stars! If in doubt, ask your 
instructor!  
 
The square box in the center of the finder field shows the field of view of the spectrometer. Now 
move the telescope to place one of the galaxies the within the square box.  Do this by slewing the 
telescope with the mouse and the N, S, E, and W buttons.  Place the arrow on the N button and 
press and hold the left mouse button.  Notice the red light comes on to indicate the telescope is 
moving in that direction.  As in real observatories, it takes a bit of practice to move the telescope 
to an object.  You can adjust the telescope’s speed by using the mouse to press the Slew Rate 
button.  The slowest rate is 1 and the fastest is 16. 

 
Once the galaxy is within the box, switch to the spectrometer by pressing Change View.  Now 
fine-tune your pointing by moving the spectrometer’s “slit” (two short parallel lines) so that it is 
positioned directly over the galaxy.  Only light passing through the slit will enter the spectrometer.  
The more light you get into your spectrometer, the stronger the signal it will detect, and the shorter 
will be the time required to get a usable spectrum.  Try to position the slit on the brightest portion 
of the galaxy to maximize the light entering the spectrometer. 
  
Step 4:  Record your first spectrum 
 
When you are satisfied with the position of the galaxy, press the Take Reading button.  A new 
“Spectrometer” window will appear which contains a plot of intensity vs. wavelength (angstroms).  
The plot will be empty initially.  To begin taking a spectrum, click Start/Resume Count.  The 
computer will plot the spectrum with the available data as it is accumulated.  Watch the 
Signal/Noise value at the bottom of the window.  We desire this value to be high, which means 

Figure 2 
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we have collected more photons from the Galaxy (the signal) than from the sky (the noise).  Click 
Stop Count when the Signal/Noise is greater than 20 – the higher, the better.  If you stop the 
counting before a high quality spectrum is achieved, you can always restart by clicking 
Start/Resume Count again. 
 
When you are happy with the quality of your spectrum, press Stop Count.  At this point, the 
spectrometer window should look something like Figure 3 below.  In Table 1, or on an Excel 
spreadsheet supplied by your instructor, record the following information for this observation: 
 

1. Object Name  
2. Integration Time (Seconds)  
3. Signal/Noise,  
4. Apparent Magnitude (V) 

 
The appropriate values are listed on the Spectrometer window below the spectrum. 
 
Step 5:  Measure the H & K line wavelengths 
 
Look at your spectrum.  The most prominent features in the galaxy’s spectrum should be the H & 
K absorption lines of ionized calcium arising from many cool stars within the galaxy.  These lines 
are approximately 40 angstroms apart, with the K line having the shorter wavelength, and they 
should stand out clearly from the noise.  If not, continue to count photons.  If you are not sure 
about the data, check with your lab instructor to help you interpret your results.   
 
You now want to measure the wavelength of the centers of the H & K lines.  Press and hold the 
left mouse button, then move the cursor to your estimate of the center wavelength of the K line.  

Figure 2 
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Release the mouse button. A tall crosshair will appear at the last mouse position and the 
wavelength and intensity of the point will appear at the top of the graph.  If you are not satisfied 
that you have selected the exact center of the K line, adjust the cursor position.  When you are 
satisfied, record the K line wavelength in Table 1.  Now repeat the procedure for the H line.  Note 
that the line intensities are not important for this lab and do not need to be recorded 
 
Step 6:  Observe the rest of your targets 
 
Now repeat steps 3, 4, and 5 for four more galaxies, one in each of four different galaxy clusters.  
Record all your measurements in Table 1. 
  
 
B.  GALAXY VELOCITIES AND DISTANCES 
 
Step 1:  Compute the galaxy redshifts 
 
Compute the H & K line redshifts, for each of your target objects and enter the results in Table 2.  
The redshifts are defined as: 
 
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜆𝜆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 (2) 

 
where the 𝜆𝜆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 values are from Table 1 and the laboratory wavelengths 𝜆𝜆 𝑙𝑙𝑙𝑙𝑙𝑙 for the H & 
K lines are 3968.847 Å and 3933.67 Å, respectively.  (Note: your redshift values should all be 
positive.  If they were negative, they would be called blueshifts!) 
  
Step 2:  Compute the radial velocities 
 
Use the Doppler Effect formula to compute the radial velocities implied by the redshifts of the H 
& K lines and enter these values in Table 2.  The Doppler formula is given by: 
 

 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑐𝑐 ×  �
redshift
𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙

� (3) 

 
where c is the speed of light (300,000 km/s).  The resultant velocity has the same units as c.  After 
all the velocities are computed, average the H & K line results for each galaxy and enter that value 
in the last column of Table 2. These mean values will represent the radial velocities of the galaxies. 
 
Step 3:  Compute the galaxy distances 
 
You will recall from an earlier lab that the distance modulus DM of an object is the difference 
between its apparent magnitude V and its absolute magnitude MV.  I.e.: 
 
 𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑉𝑉 −𝑀𝑀𝑉𝑉) (4) 
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The distance modulus can be converted to distance via the relation: 
 

 
Using equation 5, compute the distances to your five galaxies using your measured V magnitudes 
and the assumed values of MV = –22.0.  Enter the results in Table 3 in units of both parsecs (pc) 
and megaparsecs (Mpc). 
 
 
C.  THE HUBBLE CONSTANT AND THE AGE OF THE UNIVERSE 
 
Step 1:  Construct a Hubble Diagram and determine H0 
 
Now plot a Hubble Diagram by graphing the average velocity of each of your galaxies (in km/s) 
on the y-axis vs. their distance (in Mpc) on the x-axis.  Use the graph provided on the last page of 
the lab manual.  Draw a straight line which passes through the origin [i.e., (x, y) = (0, 0)] and best 
fits all the data points.  The slope of the line is the Hubble Constant (H0), as defined in 
equation 1, with units of (km/sec)/Mpc.  To calculate the slope of the line, determine a value of 
d and v from a point near the upper right end of the line you drew (do not use one of the points 
that you plotted).  The slope of the line will simply be equal to v/d, since the line passes through 
the origin.   
 
If you are using Excel, make sure that the axes and labels on your plot match those of the graph 
included with the lab.  To determine H0, fit a linear Trendline to your data.  In the Trendline 
options box, check the “Set Intercept” box and set the value to 0.0.  This will constrain the 
Trendline to pass through the origin.  Be sure to have Excel print to the equation of the Trendline 
on your graph.  The slope of the Trendline is your estimate of H0 
 
Enter your value of the Hubble Constant H0, the current expansion rate of the Universe, in the top 
row of Table 4. 
 
Step 2: Compute the Age of the Universe 
 
As noted in the lab introduction, the Hubble Constant can be used in a very simple way to estimate 
the age of the Universe.  In this final step we will make that estimate. 
 
Notice the dimensions of H0 – i.e., (km/sec)/Mpc.  H0 is represented this way because we typically 
measure galaxy velocities and distances in units of km/s and Mpc, respectively.  If we had, 
instead, measured the galactic distances in units of km, then the units of H0 would have been 
km/sec/km which simplifies to sec-1.  This shows that the natural units for the Hubble Constant 
are inverse time.   
 

 𝑑𝑑 =  10^[(𝐷𝐷𝐷𝐷+5) 5⁄ ] 𝑝𝑝𝑝𝑝 (5) 



L-9 

Let’s express H0 in these more natural units.  You could do this by re-plotting your Hubble 
Diagram with galactic distance expressed in km units rather than Mpc, and then re-determining 
the slope of the best-fit linear relation.  But a quicker way is to just divide your estimate of H0 by 
the number of kilometers in 1 Mpc.  Do this and then enter your result in the second row of Table 
4. 
 
Now what? Take another look at the Hubble Law from equation 1, but in a slightly rearranged 
form: 
 

 𝐻𝐻0−1 =  
𝑑𝑑
𝑣𝑣

 (6) 

  
This should be a familiar equation to almost anyone who has driven a car and tried to figure out 
how long it will take to reach a destination.  For example, if you have to go 120 miles and will be 
traveling at 60 miles/hour, you would simply divide the distance d by the speed v and come up 
with a trip time of 2 hours.  Looking back at equation 6 you now see that H0-1 is actually a measure 
of how long the “trip” takes.  What trip?  The trip that the galaxies have taken to reach their 
current distances beginning at a time when all the matter in the universe was squashed together!  
Expressed in another way: 
 
 𝐻𝐻0−1  ≈ 𝑡𝑡ℎ𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (7) 

 
Compute your estimate of the Age of the Universe in seconds and enter it in the third row of Table 
4.  Convert the Age into units of years, and enter in the last row or Table 4. Be careful with 
significant figures!  
 
Equation 7 contains the “approximately equal to” sign (“≈”) because it depends on one key 
assumption; namely, that the expansion rate of the Universe has always been constant.  Likewise, 
our calculation of the time needed to drive 120 miles assumed that the speed would always be 60 
miles/hour.  It turns out that we now know that the expansion rate of the Universe has varied in 
the past, but the simple estimate of the Age you just made should be very close to the currently-
accepted value. 
 

Summary Question:  How well did you do?  Go to a web browser and look up the 
best current estimate of the age of the Universe.  E.g., type “Planck satellite age of 
universe” in your favorite search engine.  It should return the results from the recent 
Planck Satellite mission.  What is the currently accepted value?  What is your percent 
error? 
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SOME USEFUL QUANTITIES 

Speed of light (c) 300,000 km/sec 

1 year  3.154 x 107 sec 

1 light year 9.46 x 1012 km 

1 parsec (pc) 3.26 light years 

1 megaparsec (Mpc) 1 x 106 pc 

1 megaparsec (Mpc) 3.086 x 1019 km 

λlab(K-line) 3933.67 Å 

λlab(H-line) 3968.847 Å 
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Table 1:  Observational Data 

Object 
Number Name 

Integration 
time   
(sec) 

Signal 
to 

Noise 

Apparent 
Magnitude 

V 

K-line 
Wavelength 

(A) 

H-Line 
Wavelength 

(A) 
1       
2       
3       
4       
5       

 

Table 2:  Galaxy Velocities 

Object 
Number Name 

K-line 
Redshift 

(A) 

H-Line 
Redshift 

(A) 

K-Line 
Velocity 
(km/s) 

H-Line 
Velocity 
(km/s) 

Average 
Velocity 
(km/s) 

1       
2       
3       
4       
5       

 

Table 3:  Galaxy Distances 

Object 
Number Name 

Absolute 
Magnitude 

MV 
Distance 
Modulus 

Distance 
(pc) 

Distance 
(Mpc) 

1      
2      
3      
4      
5      
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Table 4:  Our Universe 

Hubble Constant H0   km/sec/Mpc 

Hubble Constant H0   sec-1 

Age of the Universe   sec 

Age of the Universe   years 
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