
where wk are the singular values computed by SVD.

3.4 Sigma-clipping

As one last set of problems explored here, consider the need to fit the data
asymmetrically ; for example, we may want to fit a baseline, or an envelope of a
signal.

Fortunately, there is no new formalism that needs to be developed; we will
use linear least squares explained above in a special way.

1. Given data points (xi, yi), fit a model to all data.

2. Compute the residuals Δi = yi−y(xi|c) and the variance of the residuals,
σ0.

3. Given upper and lower clipping limits, ηhi and ηlo, remove all points that
are above ηhiσ0 and below ηloσ0.

4. Repeat the fit on the reduced number of data.

5. Continue until no further points are removed from the data.

This way, by controlling ηlo and ηhi, we control the part of the data-set that
the model will fit.

4 Artificial neural networks

A range of problems in computational physics can be very difficult or even
impossible to describe analytically, or the forward models take such a long time
that any attempts at modeling are rendered impractical. In those cases we can
consider an alternative: artificial neural networks.

An artificial neural network is a simple construct: it is a stack of intercon-
nected layers (cf. Fig. 1). Each layer is an array of processing elements called
units. These units propagate the signal between layers by weighted connections.
The units perform non-linear mapping of input data to output parameters.

The input to the network is a measured or observed dataset – an array of
sampled data points. These data are the stimulus of the input layer: each unit
on the layer acquires a value of the given input array element. Once the input
layer is populated, propagation to the hidden layer begins. The stimulus of
the given unit on the hidden layer is a weighted sum of outputs from units on
the current layer. This stimulus is then passed through a non-linear activation
function that determines the extent of stimulation of the given unit. There is
a connection from every unit on the input layer to every unit on the hidden
layer, and each of these connections has a corresponding weight assigned to
it. Once the signal has been propagated to the hidden layer, the propagation
continues to the output layer: each unit acquires a value that is a weighted sum of
outputs from units on the hidden layer, passed through the activation function.

10



Figure 1: ADD FIGURE! The topology of a three-layer Artificial Neural Net-
work (ANN). Processing units (nodes) on the input layer are populated with
input observations. A weighted sum of values on the input layer, yj =

�
k w

H
jkik,

stimulates each unit, j = 1 . . . l, on the hidden layer. The amount of stimulus
is determined by the non-linear activation function AH

f , such as a sigmoid func-

tion, AH
f (yj) = 1/[1 + exp(−(yj − µ)/τ)], with parameters µ and τ chosen in

such a way that AH
f is mapped onto the [−1, 1] interval. Processing units on the

hidden layer are then populated with hj = AH
f (yj). An analogous propagation

takes place between the hidden layer and the output layer, using the same type
of the activation function. The output layer of a trained network then contains
the network’s best guess at descriptive parameters of the data that have popu-
lated the input layer. The ANN is thus a non-linear mapping from observations
to the physical parameters of the observed system.

The network thus maps its input to its output by propagating the stimulus
via weighted connections that are passed through activation functions. Given
the layer-to-layer connection weights, the propagation is basically a matter of
summation and multiplication. The power comes from the ability of networks
to provide non-linear mapping between their input and their output by using
non-linear activation functions. The most commonly used activation functions
are sigmoid curves, i.e. functions of the type f(x) = 1/[1 + exp(−(x− µ)/τ)].

The goal of ANNs is to have output layer values that have some repre-
sentative significance of the input array. Since the output values depend on
the connection weights, the task is to determine these weights. This is where
back-propagation comes into play. Assume we have a sample of several thousand
exemplars (input arrays for which we know the corresponding parameters) – ob-
tained, for example, by computing theoretical models, or by using real data with
reliable model solutions. For each exemplar we perform forward-propagation
and compare the results output by the network with the true ones. We then
modify the weights so that the discrepancy between the results is reduced for
the whole sample. This iterative procedure is called the training or machine
learning phase. It is the only computation-intensive block and it is performed
only once. Once the weights are determined and the network reliably reproduces
the expected results, the network is ready to recognize input never seen before.
Hundreds of thousands of inputs can subsequently be processed in a matter of
seconds on a single CPU.

The network described here, a basic three-layer back-propagating network
(BPN), is remarkably robust for a diversity of non-linear problems. Different
network topologies, such as multiple hidden layers, as well as more complicated
connection strategies, advanced training approaches and other variations in gen-
eral do not bring significant improvements to the basic model. For a thorough
discussion on neural networks please refer to authoritative books such as Free-
man & Skapura (1991).

11



4.1 Back-propagation

Back-propagation, as stated above, is the modification of weights to minimize
the residuals between exemplar outputs and network-produced outputs on the
output layer. As the mapping from input to output layer is multi-dimensional
and non-linear, we resort to steepest descent.

The net input to the j-th unit on the hidden layer is:

ξhpj =
�

k

wh
jkik.

That net input is “activated” by the activation function Ah(ξ
h
pj). Similarly for

the output layer:

ξopi =
�

j

wijhj ,

activated by Ao(ξ
o
pi). We want to minimize:

Ep =
1

2

�

p

δ2pi, where δpi = ypi − opi.

To do that, we compute the (negative) gradient of Ep:

− ∂Ep

∂wij
= −δpi

∂Ao(ξ
o
pi)

∂ξopi

∂ξopi
∂wo

ij

. (45)

Given the functional form of Ao(ξ
o
pi), the first derivative is simple to calculate;

two common examples are linear and sigmoid:

Ao(ξ
o
pi) = ξopi,

∂Ao(ξ
o
pi)

∂ξopi
= 1;

Ao(ξ
o
pi) =

�
1 + e−ξopi

�−1

,
∂Ao(ξ

o
pi)

∂ξopi
= ξopi(1− ξopi) ≡ opi(1− opi).

The second derivative is also simple to calculate:

∂ξopi
∂wo

ij

=
∂

∂wo
ij

�

j

wijhj = hj .

Thus,

− ∂Ep

∂wij
= −δpiA

�
o(ξ

o
pi)hj ≡ δopihj .

Here we introduced δopi ≡ δpiA
�
o(ξ

o
pi). Then we correct the weights by taking a

step along the gradient:
wo

ij �→ wo
ij + ηδopihj . (46)

We do the exact same procedure for adjusting weights from the input layer to
the hidden layer.

To train the neural network, we thus:

12



1. apply the input vector i = (i1, . . . , iN ) to the N input units;

2. calculate the net input values to the hidden layer units as:

hj = Ah

��

k

wh
jkik

�
, where Ah(x) =

�
1− e−(x−µ)/τ

�−1

; (47)

3. calculate the net input values to the output layer as:

oi = Ao


�

j

wo
ijhj


 , where Ao(x) =

�
1− e−(x−µ)/τ

�−1

; (48)

4. calculate the error terms for the output units:

δoi = (yi − oi)A
�
o


�

j

wo
ijhj


 , (49)

where yi are known values of parameters;

5. calculate the error terms for the hidden units:

δhj = A�
h

��

k

wh
jkik

��

i

δoiw
o
ij ; (50)

6. update weights on the output layer:

wo
ij �→ wo

ij + ηδoiAo


�

j

wo
ijhj


 , (51)

where η is the learning rate parameter;

7. update weights on the hidden layer:

wh
jk �→ wh

jk + ηδhj ij ; (52)

8. calculate the overall error term:

Ep =
1

2

�

i

δ2i for the p-th exemplar; (53)

9. repeat all steps for all P exemplars.

The idea is to keep training the network for as long as Ep are decreasing and
stop once they dip below a certain threshold.

So far we only talked about neural networks used for regression; another
frequent application is classification.

13


