Luminosity: Light Given Off in all Directions

Luminosity (L): Total light emitted from the source in Joules/second (Watts)
Intrinsic to the Star

$$
\mathrm{L}=4 \pi \mathrm{r}^{2} \sigma \mathrm{~T}^{4}
$$

$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$.
$\mathrm{r}=$ radius (m)
$\mathrm{T}=$ temperature (K)
Stefan-Boltzmann constant

Luminosity of the Sun

Luminosity (L): Total light emitted from the source in Joules/second (Watts)
Intrinsic to the Star

$$
\mathrm{L}=4 \pi \mathrm{r}^{2} \sigma \mathrm{~T}^{4}
$$

$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$,
$\mathrm{r}=6.955 \times 10^{8} \mathrm{~m}$
Stefan-Boltzmann constant
$\mathrm{T}=5777 \mathrm{~K}$

Luminosity of the Sun

Luminosity (L): Total light emitted from the source in Joules/second (Watts)
Intrinsic to the Star

$$
\mathrm{L}=4 \pi \mathrm{r}^{2} \sigma \mathrm{~T}^{4}
$$

$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
$\mathrm{r}=6.955 \times 10^{8} \mathrm{~m}$
$\mathrm{T}=5777 \mathrm{~K}$

Stefan-Boltzmann constant
$\mathrm{L}=3.8 \times 10^{26} \mathrm{~W}$ atts (Joules/s)

Luminosity of the Betelgeuse

Luminosity (L): Total light emitted from the source in Joules/second (Watts)

$$
\mathrm{L}=4 \pi \mathrm{r}^{2} \sigma \mathrm{~T}^{4}
$$

$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
$\mathrm{r}=6.2 \times 10^{11} \mathrm{~m}$
$\mathrm{T}=3500 \mathrm{~K}$

Luminosity of the Betelgeuse

Luminosity (L): Total light emitted from the source in Joules/second (Watts)

$$
\mathrm{L}=4 \pi \mathrm{r}^{2} \sigma \mathrm{~T}^{4}
$$

$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
$\mathrm{r}=6.2 \times 10^{11} \mathrm{~m}$
$\mathrm{T}=3500 \mathrm{~K}$

$$
\mathrm{L}=4.1 \times 10^{31} \mathrm{~W} \text { atts (Joules } / \mathrm{s} \text {) }
$$

Luminosity of the Betelgeuse Compared to the Sun

$\mathrm{L}_{\text {Betelgeuse }}=4.1 \times 10^{31} \mathrm{~W}$ atts
$\mathrm{L}_{\text {sun }}=3.8 \times 10^{26} \mathrm{~W}$ atts
Luminosity Ratio: $\frac{4.1 \times 10^{31} \mathrm{~W} \text { atts }}{3.8 \times 10^{26} \mathrm{~W} \text { atts }}=108,000$
Betelgeuse is over 100,000 brighter than the Sun!

Comparisons with the Sun on the H-R Diagram

What if star " 1 " has
same radius $\left(\mathrm{R}_{*_{1}}\right)$ as Sun
but $\mathrm{T}_{*_{1}}=2 \mathrm{~T}_{\text {sun }}$?
Where will it live on the H-R diagram?

What if star " 1 " has same radius $\left(\mathrm{R}_{*_{1}}\right)$ as Sun but $\mathrm{T}_{*_{1}}=2 \mathrm{~T}_{\text {sun }}$?

$$
\frac{L_{*}}{L_{\text {sun }}}=\left(\frac{R_{*}}{R_{\text {sun }}}\right)^{2}\left(\frac{T_{*}}{T_{\text {sun }}}\right)^{4} \quad \begin{aligned}
& \text { Star } 1 \text { is } 16 \text { times } \\
& \text { brighter than the Sun! }
\end{aligned}
$$

What if star " 1 " has same radius $\left(\mathrm{R}_{*_{1}}\right)$ as Sun

 but $\mathrm{T}_{*_{1}}=2 \mathrm{~T}_{\text {sun }}$?

What if star " 2 " has same radius $\left(\mathrm{R}_{* 2}\right)$ as Sun

 but $\mathrm{T}_{*_{2}}=4 \mathrm{~T}_{\text {sun }}$?

What if star " 2 " has same radius $\left(\mathrm{R}_{*_{2}}\right)$ as Sun but $\mathrm{T}_{*_{2}}=4 \mathrm{~T}_{\text {sun }}$?

$$
\begin{aligned}
\frac{L_{*}}{L_{\text {sun }}} & =\left(\frac{R_{*}}{R_{\text {sun }}}\right)^{2}\left(\frac{T_{*}}{T_{\text {sun }}}\right)^{4} \\
\frac{L_{*}}{L_{\text {sun }}} & =\left(\frac{R_{*}}{R_{\text {sun }}}\right)^{2}\left(\frac{24000}{6000}\right)^{4}=\left(\frac{1}{1}\right)^{2}(4)^{4}=256
\end{aligned}
$$

$$
\text { Star } 2 \text { is } 256 \text { times }
$$

brighter than the Sun!

What if star " 2 " has same radius $\left(\mathrm{R}_{*_{2}}\right)$ as Sun

 but $\mathrm{T}_{*_{2}}=4 \mathrm{~T}_{\text {sun }}$?

What is true about all the stars that fall on the line connecting these 3 stars?

What is true about all the stars that fall on the line connecting these 3 stars?

All stars on this line have the same radius.

Temperature (K)

Mass-Luminosity Relation

Arthur Eddington

- (1882-1944)
- English astrophysicist
- Made Albert Einstein famous by organizing solar eclipse expeditions in 1919 to test (and prove correct) theory of General Relativity

1924: Mass-Luminosity Relationship

Arthur Eddington quantified the relationship between stellar masses and their luminosities for main-sequence stars:

$$
L=M^{3.5}
$$

L_{*} and M_{*} in units of the Sun's luminosity and the Sun's mass
Question: if we increase M by 10 times, do we increase L by 10 times?

1924: Mass-Luminosity Relationship

Arthur Eddington quantified the relationship between stellar masses and their luminosities for main-sequence stars:

$$
L=M^{3.5}
$$

L_{*} and M_{*} in units of the Sun's luminosity and the Sun's mass
Question: if we increase M by 10 times, do we increase L by 10 times?
We increase L by $10^{3.5}$
We increase L by 3162 times!

Mass-luminosity Relationship

If $M_{*}=10 M_{\odot}$ find L

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\mathrm{sun}}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\mathrm{sun}}}\right)^{3.5}
$$

Mass-luminosity Relationship

If $\mathrm{M}_{*}=2.5 \mathrm{M}_{\odot}$ find L

$$
\begin{aligned}
L & =M^{3.5} \\
L & =2.5^{3.5} \\
L & =25 L_{\odot}
\end{aligned}
$$

Mass-luminosity Relationship

If $L_{*}=10 \mathrm{~L}_{\text {sun }}$ find M

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\mathrm{sun}}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\mathrm{sun}}}\right)^{3.5}
$$

Mass-luminosity Relationship

If $L_{*}=10 \mathrm{~L}_{\text {sun }}$ find M

$$
\begin{array}{ll}
\mathrm{M}=L^{1 / 3.5} & \frac{\mathrm{~L}_{*}}{\mathrm{~L}_{\text {sun }}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\text {sun }}}\right)^{3.5} \\
\mathrm{M}=10^{1 / 3.5} \\
L=2 M_{\odot} &
\end{array}
$$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}$
- If Mass is $100 \mathrm{M}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\text {sun }}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\text {sun }}}\right)^{3.5}
$$

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $100 \mathrm{~L}_{\text {sun }}$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}=0.0003 \mathrm{~L}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}$
- If Mass is $100 \mathrm{M}_{\text {sun }}$

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1000 \mathrm{~L}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\text {sun }}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\text {sun }}}\right)^{3.5}
$$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}=0.0003 \mathrm{~L}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}=35777 \mathrm{~L}_{\text {sun }}=35000 \mathrm{~L}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\mathrm{sun}}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\mathrm{sun}}}\right)^{3.5}
$$

- If Mass is 100

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1000 \mathrm{~L}_{\text {sun }}$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}=0.0003 \mathrm{~L}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}=35777 \mathrm{~L}_{\text {sun }}=35000 \mathrm{~L}_{\text {sun }}$
- If Mass is $100 \mathrm{M}_{\text {sun }}=10,000,000 \mathrm{~L}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\mathrm{sun}}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\mathrm{sun}}}\right)^{3.5}
$$

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1000 \mathrm{~L}_{\text {sun }}$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}=0.0003 \mathrm{~L}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}=35777 \mathrm{~L}_{\text {sun }}=35000 \mathrm{~L}_{\text {sun }}$
- If Mass is $100 \mathrm{M}_{\text {sun }}=10,000,000 \mathrm{~L}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\text {sun }}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\text {sun }}}\right)^{3.5}
$$

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}=0.27 \mathrm{M}_{\text {sun }}=0.3 \mathrm{M}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}$
- If Luminosity is $1000 \mathrm{~L}_{\text {sun }}$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}=0.0003 \mathrm{~L}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}=35777 \mathrm{~L}_{\text {sun }}=35000 \mathrm{~L}_{\text {sun }}$
- If Mass is $100 \mathrm{M}_{\text {sun }}=10,000,000 \mathrm{~L}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\text {sun }}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\text {sun }}}\right)^{3.5}
$$

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}=0.27 \mathrm{M}_{\text {sun }}=0.3 \mathrm{M}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}=1 \mathrm{M}_{\text {sun }}$
- If Luminosity is $1000 \mathrm{~L}_{\text {sun }}$

Mass-luminosity Relationship

Find Luminosity:

- If Mass is $0.1 \mathrm{M}_{\text {sun }}=0.0003 \mathrm{~L}_{\text {sun }}$
- If Mass is $20 \mathrm{M}_{\text {sun }}=35777 \mathrm{~L}_{\text {sun }}=35000 \mathrm{~L}_{\text {sun }}$
- If Mass is $100 \mathrm{M}_{\text {sun }}=10,000,000 \mathrm{~L}_{\text {sun }}$

$$
\frac{\mathrm{L}_{*}}{\mathrm{~L}_{\text {sun }}} \approx\left(\frac{\mathrm{M}_{*}}{\mathrm{M}_{\text {sun }}}\right)^{3.5}
$$

Find Mass:

- If Luminosity is $0.01 \mathrm{~L}_{\text {sun }}=0.27 \mathrm{M}_{\text {sun }}=0.3 \mathrm{M}_{\text {sun }}$
- If Luminosity is $1 \mathrm{~L}_{\text {sun }}=1 \mathrm{M}_{\text {sun }}$
- If Luminosity is $1000 \mathrm{~L}_{\text {sun }}=7.2 \mathrm{M}_{\text {sun }}=7 \mathrm{M}_{\text {sun }}$

