THE KEPLER PROBLEM

Due date: Jan 31, 2024 - 9am

A two-body problem in a central potential can be described analytically. The orbital equation cannot be written explicitly as a function of time $(d r / d t)$, but it can be written explicitly as a function of angle $(d r / d v)$. In practice, however, we frequently need to compute the location of a moving object as a function of time. In such cases we resort to two possible approaches: solve the problem iteratively, with anomalies, or solve the differential equation numerically. We will apply both methods to the motion of Halley's comet and to study the long-term (numerical) stability of its orbit.

1. Iterative solution. Halley's comet might be the most famous comet of all time. Its perihelion distance is 0.587 au , eccentricity is 0.967 and the orbital period is 76 years. Using the Newton-Raphson method, compute the position of Halley's comet around the Sun as a function of time. Plot the orbit.
2. Runge-Kuta approximation. Compute the coefficients $\alpha_{1}, \alpha_{2}, \beta_{1}$, $\beta_{2}, \beta_{3}, \gamma_{1}, \gamma_{2}$ and γ_{3} for the third order of Runge-Kutta expansion. Typeset the derivation, mostly for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ practice.
3. Differential solution. Using an off-the-shelf $4^{\text {th }}$ order Runge-Kutta method, compute the orbit of Halley's comet and compare it with the orbit obtained by the iterative solution. Plot the accumulated error as a function of time (or the number of orbits).
4. Stability. Study the stability of Halley's comet using several differential integrators. Be sure to explicitly reference the used code or algorithms.

A quick recap: the equation of an elliptical orbit is:

$$
\begin{equation*}
r(v)=\frac{a\left(1-e^{2}\right)}{1+e \cos v} \tag{1}
\end{equation*}
$$

where a is the semi-major axis, e is orbital eccentricity and v is true anomaly. The true anomaly is measured from perihelion and can be related to time via the eccentric and mean anomalies:

$$
\begin{equation*}
\tan \frac{v}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}, \quad M=E-e \sin E=\frac{2 \pi(t-\tau)}{P}, \tag{2}
\end{equation*}
$$

where E is the eccentric anomaly, M is the mean anomaly, τ is the reference time at perihelion and P is the orbital period. Equation $M=E-e \sin E$ cannot be solved analytically for E, thus it needs to be solved iteratively, using the Newton-Raphson method. This is also the reason why $r(t)$ cannot be written out explicitly.

